质点动力学
- 格式:ppt
- 大小:3.83 MB
- 文档页数:76
第2章质点动力学2.1 牛顿运动定律一、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改 变这种状态为止。
二、牛顿第二定律物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。
表示为f ma说明:⑵在直角坐标系中,牛顿方程可写成分量式f x ma *, f y ma y , f z ma z 。
⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式f t ma t f n ma n⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。
p mv动量是矢量,方向与速度方向相同。
由于质量是衡量,引入动量后,牛顿方程可写成dv m 一 dt 当 f 0时,r 0,dp 常量,即物体的动量大小和方向均不改变。
此结 论成为质点动量守恒定律三、 牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同 一直线上。
物体同时受几个力f i ,f 2f n 的作用时,合力f 等于这些力的矢量和f n力的叠加原理d pdtf ma说明:作用力和反作用力是属于同一性质的力。
四、国际单位制量纲基本量与基本单位导出量与导出单位五、常见的力力是物体之间的相互作用。
力的基本类型:引力相互作用、电磁相互作用和核力相互作用。
按力的性质来分,常见的力可分为引力、弹性力和摩擦力。
六、牛顿运动定律的应用用牛顿运动定律解题时一般可分为以下几个步骤:隔离物体,受力分析。
建立坐标,列方程。
求解方程。
当力是变力时,用牛顿第二定律得微分方程形式求解。
例题例2-1如下图所示,在倾角为30°的光滑斜面(固定于水平面)上有两物体通过滑轮相连,已知叶3kg, m2 2kg,且滑轮和绳子的质量可忽略,试求每一物体的加速度a及绳子的张力F T(重力加速度g取9.80m • s 2)。
解分别取叶和m2为研究对象,受力分析如上图。
利用牛顿第二定律列方程:「m2g F TYL F T m1gsi n30o m1a绳子张力F T F T代入数据解方程组得加速度a 0.98m • s 2,张力F T 17.64N。
质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。
牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。
第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。
第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。
物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。
该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
质点动力学知识点总结基本概念:质点:具有质量但没有体积和形状的物体模型。
力:质点动力学研究的核心内容,包括恒力、变力和约束力。
运动方程:描述质点在外力作用下的运动规律的基本方程。
动量:描述质点运动状态的重要物理量,等于质点的质量乘以速度。
动能:描述质点运动状态的另一个重要物理量,等于质点的质量乘以速度的平方再乘以1/2。
势能:描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。
角动量和角动量定理:与质点的旋转运动相关的物理量和定理。
基本理论:牛顿运动定律:描述了质点在作用力作用下运动的规律,即F=ma,其中F表示合外力,m表示质点的质量,a表示质点的加速度。
动量定理:通过动量的概念揭示了力与运动之间的内在联系,即合外力的冲量等于物体动量的变化量,表达式为Ft=mV-mv。
动能定理:引入动能的概念,建立了力学与能量之间的关系,即合外力做的功等于物体的动能的改变量,表达式为W=1/2mV^2-1/2mv^2。
分析方法:矢量方法:利用矢量运算符对问题进行矢量分析。
微分方程方法:将运动方程化为微分方程,然后求解微分方程获得运动规律。
能量方法:利用能量守恒定律等能量原理分析运动问题。
实际应用:军事方面:应用在导弹、卫星、航天器和飞机等领域,研究其受力情况和运动规律,从而提高军事制式的效率和效果。
经济方面:应用在金融市场和交通运输领域,分析市场变化和流动性,以及货运运输的效益和优化策略。
社会方面:研究城市交通拥堵问题、人口迁移以及城市规律,以提高城市的运作效率和质量。
总的来说,质点动力学涉及到质点的运动规律、动量、动能、势能等基本物理量的研究,以及相关的理论和实际应用。
通过学习和掌握质点动力学的知识,可以更好地理解物体在外力作用下的运动规律,以及如何利用这些规律解决实际问题。
质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。
在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。
在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。
希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。
一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。
根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。
根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。
二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。
这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。
2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。
这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。
三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。
根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。
动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。
根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。
四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。
动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。
第五章质点动力学动力学的任务•研究物体机械运动一般规律动力学基本线索动力学内容•质点动力学、动力学普遍定理、刚体动力学、动静法、分析力学物体机械运动状态改变量力对物体机械作用量动力学两类问题第一类问题•已知运动,求力第二类问题•已知力,求运动舰载飞机在发动机和弹射器推力作用下从甲板上起飞若已知初速度、飞离甲板的速度,则需要弹射器施加多大推力,或者确定需要多长的跑道。
若已知推力和跑道长度,则需要多大的初速度和多长时间才能达到飞离甲板所需速度。
ABv1v2载人飞船的交会与对接质点动力学(dynamics of a particle)本章研究质点在惯性与非惯性系中的运动微分方程。
1.惯性系质点动力学基本方程2.非惯性系质点动力学基本方程3.地球自转对质点运动的影响1.惯性系质点动力学基本方程质点动力学基本方程(牛顿第二定律)(1683-1727)1. 惯性系质点动力学基本方程•矢量形式•直角坐标形式xy质点运动微分方程∑∑∑===iizi iyi ixF zm F ym F xm1.惯性系质点动力学基本方程•自然坐标形式•极坐标形式?质点运动微分方程∑∑∑===bi ni τi FF sm F s m 02ρ1. 惯性系质点动力学基本方程求解质点动力学问题的过程与步骤大致如下1.确定研究对象,选择适当的坐标系;2.进行受力分析,画受力图;3.进行运动分析,计算运动参数;4.列出质点的运动微分方程,分清是第一类问题还是第二类问题,分别用微分或积分法求解;对第一类问题,需要确定加速度,对第二类问题,加速度方向要和投影轴方向一致,并写出初条件。
5.根据需要对结果进行必要的分析讨论。
【例】圆锥摆。
质量为1kg 的重物,被绳限制在水平面内作圆周运动,成为锥摆形状;绳长l =30cm ,与铅垂线角度θ=60°。
求:速度v 及张力T 的大小。
1. 惯性系质点动力学基本方程G解:以小球为研究的质点,作用力:重力G ,绳子拉力T 。
动力学的质点动力学是研究物体运动规律和受力情况的学科,而质点是动力学中研究对象的一种抽象。
质点假设为没有大小、形状和内部结构的物体,只具有质量和位置属性。
本文将深入探讨动力学的质点理论,从基本概念、牛顿力学及其应用等方面进行讨论。
一、基本概念动力学的质点理论中有一些基本概念需要清楚理解。
首先是质点的质量和位置。
质点的质量是指其固有的物质量,通常用符号m表示。
位置是指质点在空间中的位置坐标,通常用符号r表示。
力是质点运动的原因,它改变质点的运动状态。
动力学的基本定律是牛顿第二定律,它描述了质点在力作用下的加速度与所受力的关系,即F=ma,其中F是质点受到的力,a是质点的加速度。
二、牛顿力学牛顿力学是经典力学的重要分支,它涉及了动力学的质点理论。
牛顿力学研究的对象是宏观物体,质点是宏观物体的抽象,通过分析质点的运动状态可以推导出宏观物体的运动规律。
牛顿力学的三大定律是质点运动的基本原理。
1. 牛顿第一定律(惯性定律):一个物体如果没有外力作用,将保持静止或匀速直线运动。
这意味着质点在受力为零时,速度将保持不变。
2. 牛顿第二定律(运动定律):质点的加速度与作用在它上面的力成正比,与质点的质量成反比。
这条定律可用公式F=ma表示。
3. 牛顿第三定律(作用与反作用定律):任何一个力的作用都会有一个与之大小相等、方向相反的力作用在另一个物体上。
三、应用领域动力学的质点理论在工程、天文学、生物学等领域有着广泛的应用。
以下是其中几个应用领域的简要介绍。
1. 空间工程:通过动力学的质点理论,可以对航天器在宇宙中的运动轨迹进行分析和计算,从而确定航天器的轨道和姿态控制。
2. 汽车工程:动力学的质点理论可以应用于汽车的运动学和动力学分析,包括汽车的加速度、速度和位移等参数的计算。
3. 生物力学:生物力学研究生物体的力学特性和运动方式,动力学的质点理论在分析人体运动和身体力学方面具有重要作用。
4. 天体力学:天体力学是研究天体运动和相互作用的学科,动力学的质点理论在行星运动、日食月食等天文现象的预测和解释中发挥着关键作用。