一平面简谐波的波动方程
- 格式:ppt
- 大小:621.50 KB
- 文档页数:30
习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。
普通物理(一)上06卷含答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN苏州大学 普通物理(一)上 课程试卷(06)卷 共6页考试形式 闭 卷 年 月院系 年级 专业 学号 姓名 成绩一、填空题:(每空2分,共40分。
在每题空白处写出必要的算式) 1、一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的 (设平衡位置处势能为零)当这物块在平衡位置时,弹簧的长度比原长伸长△l ,这一振动系统的周期为 。
2、一平面简谐波的波动方程为y=0.25cos (125t-0.37x )(SI ),其圆频率 ω= ,波速V= ,波长λ= 。
3、一飞轮以角速度ω0绕轴旋转,飞轮对轴的转动惯量为I ,另一个转动惯量为5I 的静止飞轮突然被啮合到同一个轴上,啮合后整个系统的角速度ω= 。
4、图示水平管子,粗的一段截面积S 1=1m 2,水的 流速为V 1=5m/s ,细的一段截面积S 2=0.5m 2,压强 P 2=2×105Pa ,则粗段中水的压强P 1= 。
5、电偶极矩p 的单位为 。
闭合球面中心放置一电偶极矩为p 的电偶极子则通过闭合球面的电场E 的通量φ= 。
S 1S26、点电荷q 位于导体球壳(内外半径分别为R 1和R 2)的中心,导体球壳内表面电势U 1= 。
球壳外表面U 2= ,球壳外离开球心距离r 处的电势U= 。
7、固定于y 轴上两点y=a 和y=-a 的两个正点电荷,电量均为q ,现将另一个负点电荷-q 0(质量m )放在x 轴上相当远处,当把-q 0向坐标原点稍微移动一下,当-q 0经过坐标原点时速度V= ,-q 0在坐标原点的电势能W= 。
8、如图所示带负电的粒子束垂直地射入两磁铁之间 的水平磁场,则:粒子将向 运动。
9、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质。
一、平面简谐波的概念平面简谐波是一种特殊的波动现象,它具有特定的波动方程和波动特性。
简谐波的振幅随时间以正弦或余弦函数变化,具有周期性和频率性,是物理学中常见的一种波动形式。
二、平面简谐波的波动方程1. 时间域的波动方程在时间域内,平面简谐波的波动方程可以表示为:\[y(x,t) = A\sin(kx - \omega t + \phi)\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。
2. 空间域的波动方程在空间域内,平面简谐波的波动方程可以表示为:\[y(x,t) = A\sin(kx - \omega t + \phi)\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。
3. 复数形式的波动方程在复数形式下,平面简谐波的波动方程可以表示为:\[y(x,t) = A\cos(kx - \omega t + \phi) = \Re(Ae^{i(kx - \omega t + \phi)})\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。
三、不同形式的波动方程之间的关系1. 时间域的波动方程和空间域的波动方程时间域的波动方程和空间域的波动方程在形式上是相似的,都可以表示为简谐波的位移随时间和空间的变化而发生正弦或余弦函数的周期性振荡。
它们之间通过变量的不同而具有不同的物理意义,但是描述的是同一种波动现象。
2. 复数形式的波动方程和实数形式的波动方程在复数形式下,简谐波的波动方程可以更加简洁地描述,通过复数的指数函数形式可以很方便地进行波动的运算和分析。
复数形式的波动方程和实数形式的波动方程是等价的,可以相互转化,但在不同的数学和物理背景下有着不同的应用优势。
四、平面简谐波的应用领域平面简谐波作为一种特殊的波动形式,广泛应用于物理学、工程学、生物学等领域。
它在声学、光学、电磁学、机械振动、信号传输等方面有着重要的应用价值,可以用来描述和分析各种复杂的波动现象。
1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,已知0=t 时的初位移为, 初速度为s -1,则振幅A = ,初相位 = 解:已知初始条件,则振幅为:(m )05.0)309.0(04.0)(222020=-+=-+=ωv x A 初相: οο1.1439.36)04.0309.0(tg )(tg 1001或-=⨯-=-=--x v ωϕ因为x 0 > 0, 所以ο9.36-=ϕ2. 两个弹簧振子的的周期都是, 设开始时第一个振子从平衡位置向负方向运动,经过后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为 。
解:从旋转矢量图可见,t = s 时,1A ρ与2A ρ反相,即相位差为。
3. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的 (设平衡位置处势能为零)。
当这物块在平衡位置时,弹簧的长度比原长长l ∆,这一振动系统的周期为解:谐振动总能量221kA E E E p k =+=,当A x 21=时4)2(212122EA k kx E p ===,所以动能E E E E p k 43=-=。
物块在平衡位置时, 弹簧伸长l ∆,则l k mg ∆=,lmgk ∆=, 振动周期gl km T ∆==ππ224. 上面放有物体的平台,以每秒5周的频率沿竖直方向作简谐振动,若平台振幅超过 ,物体将会脱离平台(设2s m 8.9-⋅=g )。
解:在平台最高点时,若加速度大于g ,则物体会脱离平台,由最大加速度g A v A a m ===22)2(πω 得最大振幅为(m)100.11093.9548.94232222--⨯≈⨯=⨯==ππv g A 5. 一水平弹簧简谐振子的振动曲线如图所示,振子处在位移零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 点。
振子处在位移的绝对值为A 、速度为零、加速度为-2A 和弹性力-kA 的状态,对应于曲线的 点。