第二讲:线性规划算法
- 格式:ppt
- 大小:575.50 KB
- 文档页数:12
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,如生产计划、资源分配、物流管理等。
本文将详细介绍线性规划的基本概念、模型建立、求解方法以及应用案例。
一、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为系数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,通常表示为a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,其中a₁、a₂、...、aₙ为系数,b为常数。
3. 可行解:满足所有约束条件的解称为可行解。
可行解构成了可行域,即决策变量的取值范围。
4. 最优解:在所有可行解中,使目标函数取得最大或最小值的解称为最优解。
最优解可能是唯一的,也可能存在多个。
二、模型建立1. 决策变量:线性规划的决策变量是问题中需要决策的量,通常表示为x₁、x₂、...、xₙ。
2. 目标函数:根据问题的具体要求,确定目标函数的系数。
如果是最大化问题,系数一般为正;如果是最小化问题,系数一般为负。
3. 约束条件:根据问题中的限制条件,建立线性约束条件。
将约束条件表示为不等式形式,并确定各个约束条件的系数和常数。
4. 可行域:根据约束条件的线性不等式,确定决策变量的取值范围,即可行域。
三、求解方法1. 图解法:对于二维问题,可以使用图解法求解。
将目标函数和约束条件绘制在坐标系中,通过图形的交点确定最优解。
2. 单纯形法:对于高维问题,单纯形法是最常用的求解方法。
它通过迭代计算,逐步优化目标函数的值,直到找到最优解。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法求解。
整数规划是线性规划的扩展,增加了变量取整的限制条件。
四、应用案例1. 生产计划:某公司有限定的资源和订单需求,需要确定各个产品的生产数量,以最大化总利润为目标。