故障诊断的常用图谱
- 格式:docx
- 大小:16.59 KB
- 文档页数:5
包络解调法及其诊断包络解调法是故障诊断中较常用的一种方法,它可非常有效地识别某些冲击振动。
从而找到该冲击振动的振源。
例如,当轴承或齿轮表面因疲劳或应力集中而产生剥落和损伤时,会产生周期性的冲击振动信号,如图4—25所示。
从图4—25个可以看出,信号包括两部分:—部分是载频信号,即系统的自由振荡信号及各种随机干扰信号的频率,是图形中频率成分较高的信号;第二部分是调制信号,即包络线所包围的信号。
它的频率较低,多为故障信号。
因此.若要对故障源进行分析,就必须把低频信号(或调制信号)从高频信号(或载频信号)中分离出来。
这一信号分离、提取过程,被称为信号的包络解调。
对分离提取出来的包络信号进行特征频率和幅度分析,就能准确可靠地诊断出如轴承和齿轮的疲劳、切齿、剥落等故障。
目前分析高频冲击的有效方法之一是共振解调(包络处理),即取振动时域波形的包络线,然后对包络线进行频谱分析。
由于包络线处理可找出反复发生振动的规律,根据轴承的特征频率,就可诊断出轴承或齿轮故障的部位。
研究表明,当轴承或齿轮无故障时,在共振解调频谱中没有高阶谱线;有故障时,共振解调频谱中出现高阶谱线。
当齿轮发生疲劳裂纹时,齿轮刚度的变化会引起齿轮振动噪声信号瞬时频率(相位)和幅值的变化。
但裂纹由于只影响齿轮刚度,齿形无大变化,故振动噪声信号在频域中无明显征兆,因此频谱分析对裂纹诊断基本无效。
可采用时域平均法分析。
如果齿轮同时存在其它类型的故障,则时域平均法的可靠性不高。
此时可试用希尔伯特变换或自适应滤波技术提取相位信息,也可试用共振解调分析技术即包络谱分析法。
一、包络分析法进行故障诊断的原理当轴承或齿轮某一元件表面出现局部损伤时,在受载运行过程中要撞击与之相互作用的其它元件表面,产生冲击脉冲力,由于冲击脉冲力的频带很宽,就必然激起测振系统的高频固有振动。
根据实际情况,可选择某一高频固有振动作为研究对象,通过中心频率等于该固有频率的带通滤波器把该固有振动分离出来。
状态监测与故障诊断的基本图谱一、常规图谱常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。
1. 机组总貌图机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。
2. 单值棒图较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。
3. 多值棒图多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。
正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。
其中:(1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。
(2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。
(3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。
(4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。
(5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。
主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。
(6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。
4. 波形图波形图显示了振动位移与时间的关系,又称幅值时域图。
波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。
前言S8000系统为阿尔斯通创为实技术发展(深圳)有限公司开发的新一代大型旋转机械状态监测系统,该系统现已被越来越多的石化、电力、冶金企业所使用,并成为设备管理人员对大机组管理、诊断的得力助手。
本案例集收集了近三年内,使用S8000系统进行的部分诊断案例,并按案例类别进行了大概的整理,供各企业设备管理人员参考;由于原诊断报告篇幅过长,在本案例集中对原报告进行了一些删剪,以方便阅读,如需对某案例进行更详细了解,请与创为实公司联系;由于我们的水平有限,可能的失误难免存在,欢迎批评指正。
阿尔斯通创为实技术发展(深圳)有限公司2007年9月目 录1 叶片断裂类案例 (1)2 油膜涡动类故障 (35)3 磨擦类故障 (56)4 垢层脱落故障 (64)5 电气干扰类故障 (74)6 动平衡不良类 (88)7 通过相关性分析发现工艺量设置类问题 (95)8 转子热弯曲 (102)1叶片断裂类案例1.1某厂04年09月27日空压机断叶片故障诊断分析故障状态描述:此厂空气压缩机组K1202/KT1202于2004年9月27日发生空压机驱动透平振动突然增大事故,以下把故障发生过程中各图谱的变化情况列举如下:通频值振动趋势图(2004-09-27 12:01:5至2004-09-27 15:36:5的历史数据和灵敏监测数据)从上面的趋势图上可以很清楚的看出,该机组在9月27日的12:18:09时振动瞬间突发性升高,同时,振动的相位也发生了明显的变化,其振动能量主要是集中表现在工作频率上。
这些都意味着透平转子出现了故障,产生了极大的不平衡。
126V035A波形频谱图(事故发生瞬间的整个过程)上图为某一测点事故发生瞬间整个过程的波形频谱图,从图中可以看到转子物质脱落前的4个周期的振动波形、脱落开始的瞬间波形变化以及脱落后的振动慢慢趋于稳定的系列过程,这一瞬间不仅其振动的幅值有大幅度的增大,而且其相位的变化也较明显。
透平入口事故发生瞬间的轴心轨迹图诊断分析结果:通过对S8000系统所捕捉到的数据的分析,我们认为这次故障是因为透平转子上有部件掉落,如叶片突然断裂或围带、拉筋、铆钉脱落,因而瞬间造成了一个很大的不平衡,引起振动在短时间内突然上升。
机械故障诊断的信号处理方法:频域分析王金福;李富才【摘要】Frequency-domain analysis is the most conventional method for signal processing in fault diagnosis of machinery. In the literature, a number of frequency-domain-based methods have been applied to detect faults in machinery and each method has its own features. Therefore, selecting appropriate method plays a pivotal role in inspecting defects according to vibration signals. Characteristics of fault-caused vibration signals and frequency-domain-based methods were summarized in this paper using representative examples, so as to establish a rule of selecting appropriate signal methods for extracting vibration features of different mechanical equipments. The results can be used to improve the precision and reliability of several kinds of fault diagnoses for key components in different machinery.% 频域分析方法是机械故障诊断中信号处理最重要和最常用的分析方法,其种类繁多且各具特点。
振动分析常见图谱一、跟踪轴心轨迹轴心轨迹是轴心相对于轴承座的运动轨迹,它反映了转子瞬时的涡动状况。
对轴心轨迹的观察有利于了解和掌握转子的运动状况。
跟踪轴心轨迹是在一组瞬态信号中,相隔一定的时间间隔(实际上是相隔一定的转速)对转子的轴心轨迹进行观察的一种方法。
这种方法是近年来随着在线监测技术的普及而逐步被认可的,它具有简单、直观,判断故障简便等优点。
图4-20是某压缩机高压缸轴承处轴心轨迹随转速升高的变化情况,在能过临界转速及升速结束之后,轨迹在轮廓上接近椭圆,说明这时基频为主要振动成分,如果振幅值不高,应该说机组是稳定的。
如果达到正运行工况时机组振幅值仍比较高,应重点怀疑不平衡,转子弯曲一类的故障。
二、波德(Bode)图波德图是描述某一频带下振幅和相位随过程的变化而变化的两组曲线。
频带可以是1×、2×或其他谐波;这些谐波的幅、相位既可以用FFT法计算,也可以用滤波法得到。
当过程的变化参数为转速时,例如启、停机期间,波德图实际上又是机组随激振频率(转速)不同而幅值和相位变化的幅频响应和相频响应曲线。
当过程参数为速度时,比较关心的是转子接近和通过临界转速时的幅值响应和相位响应情况,从中可以辨识系统的临界转速以及系统的阻尼状况。
图4-21 某压缩机高压缸波德图图4-21是某转子在升速过程中的波德图。
从图中可以看出,系统在通过临界转速时幅值响应有明显的共振峰,而相位在临界前后转了近180。
除了随转速变化的响应外,波德图实际上还可以做机组随其他参数变化时的响应曲线,比如时间,不过这时的横坐标应是时间,这对诊断转子缺损故障非常有效。
也可以针对工况,当工况条件改变时做波德图,这时的幅频响应和相频响应如果不是两条直线,说明工况变化对振动的大小和相位有影响,利用这一特点可以甄别或确认其他症兆相近的故障。
三、极坐标图极坐标图实质上就是振动向量图,和波德图一样,振动向量可以是1×、2×或其他谐波的振动分量。
12345678910冷库冷库冷库冷库冷库冷库冷库冷库冷库2014年1月
2014年2月
2014年3月
2014年4月
2014年5月
2014年6月
2014年7月
2014年8月
2014年月
24681012地点冷库
冷库
冷库
冷库
冷库
冷库
冷库
日期
2014年1月2014年2月2014年3月2014年4月2014年5月2014年6月2014年7月201
10
12
246810冷库冷库冷库冷库冷库冷库冷库冷库冷库2014年1月
2014年2月
2014年3月
2014年4月
2014年5月
2014年6月
2014年7月
2014年8月
2014
月
故障次数
冷库冷库冷库
冷库
14年9月2014年10
月
2014年11
月
2014年12
月
故障次数
月故障率
冷库冷库冷库冷库冷库
2014年8月2014年9月2014年10
月2014年11
月
2014年12
月
冷库冷库冷库冷库
014年9月2014年10
月
2014年11
月
2014年12
月
月故障率
故障次数
2014年1月冷库
2014年2月冷库
2014年3月
冷库2014年4月冷库2014年5月冷库2014年6月冷库2014年7月冷库2014年8月冷库2014年9月冷库2014年10月冷库2014年11月冷库2014年12月冷库。
极坐标变换
图5-1 正常电机
图5-2 三根断条
图5-3 偏心电机
图5-4 匝间短路
图5-5 好电机
图5-6 三根断条
图5-7 正常电机
图5-8 三根断条电机
图5-9 气隙偏心
图5-10 匝间短路
下面图5-11,图5-12,图5-13,图5-14分别为正常电动机,三根断条电动机,气隙偏心电动机和匝间短路电动机的扩展PARK矢量分析图形:
图5-11 好电机
图5-12 三根断条
图5-13 气隙偏心
图5-14匝间短路
下面图5-15,图5-16,图5-17,图5-18分别为正常电动机,三根断条电动机,气隙偏心电动机和匝间短路电动机的极坐标变换图形:
图5-15 正常电机
图5-16 三根断条电机
图5-17 气隙偏心电机
图5-18 匝间短路电机。
状态监测与故障诊断的基本图谱一、常规图谱常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。
1. 机组总貌图机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。
2. 单值棒图较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。
3. 多值棒图多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。
正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5 倍频微量或无,可选频段很小,残余量不大。
其中:(1)通频值〜即总振动值,为各频率振动分量相互矢量迭加后的总和。
(2)—倍频〜为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n /60 [Hz] ;转子动不平衡及轴弯曲、轴承不良(偏心) 、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。
( 3)二倍频〜二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等, 都会引起二倍频振动分量增大,绝大多数是轴系不对中。
( 4) 0.5 倍频〜0.5 倍工频,又称半频, 油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。
(5)可选频段〜由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6) 倍工频或(0.3~0 .8) 倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。
主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。
( 6)残余量〜除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时, 转子有可能发生摩擦、高频气流脉动等。
4. 波形图波形图显示了振动位移与时间的关系,又称幅值时域图。
故障诊断的常用图谱
5.1常规图谱(又称稳态图,不含开停车信息)
5.1.1机组总貌图——显示机组总貌,查看探头的位置及位号。
5.1.2单值棒图——显示实时振动值,并可知低报、高报警值及转速。
5.1.3多值棒图¬——显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。
①通频值——通频值即总振动值,为各频率下振动分量相互迭加后的总和。
②一倍频——又称基频、工频,为转子实际工作转速的频率,
f = n /60 [Hz];转子动不平衡、轴承工作不良、热态对中不良等均会引起一倍频增大,发生概率依次降低。
③二倍频——二倍工频,转子热态对中不良、裂纹、松动等都会引起二倍频增大,主要是对中不良。
④0.5倍频——0.5倍工频,油膜失稳会引起该频率段增大,轴承工作不良(如间隙、紧力、接触、摇摆、油档等)也会引起该段频率增大;旋转失速(喘振的先兆)的频率为(0.4~0.8)倍工频,也有可能。
⑤可选频段——用户根据机组的特点,自己定义的频段。
⑥残余量——剩余频率成分振动分量的总和。
该部分振值高时,转子有可能发生摩擦、气流脉动等。
正常运转状态下的多值棒图通常是,一倍频最大,二倍频小于一倍频的一半,0.5倍频微量或无,残余量不大。
5.1.4波形图——显示通频振动位移(总振值)与时间(周期)的关系,又称幅值时域图。
在正常的状态下,波形图应为较平滑的正弦波,且重复性好。
a.动不平衡时,在一个周期内为典型的正弦波;
b.中不良时,在一个周期内为波峰翻倍,波形光滑、稳定、重复性好;
c.摩擦时,波峰多,波形毛糙、不稳定、或有削波;
d.自激振荡(油膜涡动,旋转脱离)时,波形杂乱、重复性差、波动性大。
5.1.5频谱图——显示了在各振动分量的频率及其振幅值。
横坐标可选择“阶比”或“频率”,一般用阶比。
各种频率所对应的故障可参照前面在多值棒图中的介绍。
正常运转状态下的频频图通常是,一倍频最大,二倍频次之、约小于一倍频的一半,三倍频、四倍频…x倍频逐步参差递减,低频(即小于一倍频的成份)微量。
看图谱不能就图看图,一定要与历史和正常运转下的频谱图相比较,查找那些频率成份发生了变化,变化的倍率有多大。
5.1.6轴心轨迹图——显示转子轴心相对于轴承座涡动运动的轨迹。
有原始、提纯、平均、一倍频、二倍频等轴心轨迹,主要看提纯。
在正常的情况下,轴心轨迹为一椭圆形。
若轴心轨迹的形状、大小重复性好,则表明转子是稳定的。
对中不良时,为香蕉状,严重时为8字形;
摩擦时,多处出现锯齿尖角或小环;
瓦块安装间隙相互偏差较大时,会出现明显的凸起状。
油膜涡动时,大圈套小圈。
5.1.7振动趋势图——显示振幅及相位与时间的关系。
从振动趋势图可以看到异常振动的起始时间、持续时间、终止时间,依此查看DCS,查找机组的运行参数有无发生重大变化,从而确定故障的真伪。
还可以通过选择框,看到各探头的间隙电压趋势,从而确定一次仪表本身有无故障。
并且可以更清晰地看到工频、二倍频、0.5倍频等主要频率成份幅值变化的形态,从而进行故障类型、程度、趋势的诊断。
依次看各振动分量的趋势图,查找变化量最大的频率成分,从而确定故障类型。
例如,看一倍频有无变化,能否回到原正常值,是否发生突变(含相位)。
若不能回到原正常值,则为动不平衡;若突变,则为转子损伤;若变化缓慢,则为转子结垢(如催化剂粘结)。
看异常振动分量的变化倍率,从而确定故障的程度,进而确定是否停机。
例如,对动不平衡,若超出正常值的一倍,应引起重视,但仍可监视运行;若超出2.5倍,或为继续上升的趋势,则应尽快组织停机抢修。
对伴有低频分量引起的轴承工作不良,则应根据波动的间隔时间、波动量的大小、能否回到原正常值作出判断。
5.1.8过程振动趋势图——显示转子轴位移及机组的过程参数与时间的关系。
机组的过程参数,如进出口压力、温度及流量、油温、瓦温等,对故障诊断是有帮助的。
轴位移发生变化时应该与转子的轴向力(由进、出口压差、流量、分子量、是否带液等决定)及推力轴承瓦温综合判断。
5.1.9极坐标图——各振动分量的幅值及相位随时间变化的统计结果,亦称可接受区域图。
散布集中、相位稳定时,好;散布区域增大、相位改变时,应引起重视。
5.1.10轴心位置图——在忽略振动的情况下,显示轴心相对与轴承中心的稳态位置。
可以看出轴承的偏位角、偏心距、最小油膜的厚度,从而判断转子运行是否平稳。
5.1.11全息谱图——全面反映转子在同一轴承处主要振动分量的振幅、相位、频率信息。
全息谱图实际上是将两个相互垂直的同一阶次频率谐波合成后的轨迹图集合在一起,对分析较疑难的故障作用更加明显。
正常运转状态下,全息谱图中的轨迹为椭圆。
若轨迹为正圆或接近为正圆,则表明两个相互垂直方向上的振动幅值相同、相位差为90°或幅值相近、相位差很接近90°;若轨迹为
斜直线或接近为斜直线,则表明两方向振动相位相同或非常接近;若轨迹为水平线或垂直线,则表明水平或垂直方向上的振动分量要比另一方向大得多。
5.2启停机图谱(又称瞬态图,仅分析启停机过程中的状况)
5.2.1转速时间图——显示开停机过程中,转速变化与时间的关系。
5.2.2 Nyquist图——把开停机过程中振幅与相位随转速变化关系用极坐标的形式表示出来,又称极坐标图,或奈奎斯特图。
通过最大振幅,可以看见转子的实际临界转速,通过有无小圈,可以看到转子以外的元件振动,如管道、联轴节、机壳、基础等对转子产生的谐振作用。
5.2.3波德图——显示转子振幅和相位随转速变化的关系曲线。
可以看出临界转速,计算出动态放大倍数,估算出系统阻尼。
5.2.4频谱瀑布图(级联图) ——显示转子在各种转速(或时间)下的频谱变化。
通常表示:X轴——频率;Y轴——振幅;Z轴——时间或转速间隔。