微专题2 平衡中的临界与极值问题
- 格式:pptx
- 大小:1.20 MB
- 文档页数:16
一. 教学内容:平衡问题中的临界与极值问题归纳二. 学习目标:1、掌握共点力作用下的物体平衡条件的应用问题的分析方法。
2、掌握平衡问题中临界与极值问题的特征。
3、熟练掌握典型的临界与极值问题的常用处理方法和技巧。
考点地位:共点力作用下的物体平衡问题中的极值与临界问题是处理平衡问题的难点所在,这部分内容重点体现与数学知识的融合,体现了高考大纲中所要求的运用数学方法分析物理问题的能力,同时这部分内容在高考中常与库仑力、安培力等相互结合,难度较大。
三. 重难点解析:1. 共点力作用下物体平衡的条件在共点力作用下物体平衡的条件是:物体所受的合力为零。
即(矢量式)。
用正交分解法解决有关在共点力作用下的物体平衡问题时,平衡条件可叙述为:用平衡条件的正交表达形式解题具有三大优点:其一,将矢量运算转变为代数运算,使难度降低。
其二,将求合力的复杂的解斜三角形问题,转变为正交分解后的直角三角形问题,使运算简便易行。
其三,当所求平衡问题中需求两个未知力时,这种表达形式可列出两个方程,使得求解十分方便。
2. 力的平衡作用在物体上所有力的合力为零,这种情形叫做力的平衡。
(1)当物体只受两个力作用而平衡时,这两个力大小一定相等,方向一定相反,且作用在同一直线上。
这两个力叫做一对平衡力。
(2)当物体受到三个力的作用而平衡时,这三个力必在同一平面内,且三个力的作用线或作用线的延长线相交于一点,这就是三力汇交原理。
3. 一对平衡力与一对作用力和反作用力的区别(1)平衡力作用于同一物体上。
作用力和反作用力分别作用在两个物体上。
(2)作用力与反作用力性质相同。
平衡力的性质不一定相同。
例如静止在水平桌面上的物体,重力与桌面的支持力是一对平衡力;支持力是弹力,与重力的性质不同。
(3)作用力与反作用力同时产生、同时变化、同时消失,平衡力中的某一力变化或消失时,其他力不一定变化或消失。
例如抽去桌面时,物体所受的支持力消失,但物体的重力仍然保持不变。
平衡中的临界和极值问题所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。
求解平衡的临界问题一般用极限法。
极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选择某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。
在平衡中最常见的临界问题有以下两类: 一、以弹力为情景1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。
2. 绳子断与持续的临界条件是:作用力达到最大值;绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。
例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。
解:作出A 受力图如图所示,由平衡条件有:F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为:N F N 33403320≤≤变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断?(2)要使细线不被拉断,拉力F 不得超过多少?变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承受的最大拉力均为T ,则每根绳的长度不得短于__ ____.例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。
平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.3.解决极值问题和临界问题的方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例1、(2016·东北三校二联)如图7所示,有一倾角θ=30°的斜面体B ,质量为M 。
质量为m 的物体A 静止在B 上。
现用水平力F 推物体A ,在F 由零逐渐增加至32mg 再逐渐减为零的过程中,A 和B 始终保持静止。
对此过程下列说法正确的是( )A .地面对B 的支持力大于(M +m )gB .A 对B 的压力的最小值为32mg ,最大值为334mgC .A 所受摩擦力的最小值为0,最大值为mg 4D .A 所受摩擦力的最小值为12mg ,最大值为34mg 例2、如图10所示,质量为m 的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.例3、质量为M的木楔倾角为θ,在水平面上保持静止,当将一质量为m的木块放在木楔斜面上时,它正好匀速下滑.如果用与木楔斜面成α角的力F拉着木块匀速上升,如图12所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F有最小值,求此最小值;(2)当α=θ时,木楔对水平面的摩擦力是多大?例4、拖把是由拖杆和拖把头构成的擦地工具(如图)。
4.相互作用点点清专题之平衡中的临界与极值问题一知能掌握1.平衡中的临界问题某种物理现象变化为另一种物理现象或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态为临界状态,临界状态也可理解为“恰好出现”或“恰好不出现”某种现象的状态,平衡物体的临界状态是指物体所处的平衡状态将要变化的状态,涉及临界状态的问题叫临界问题,解决这类问题一定要注意“恰好出现”或“恰好不出现”的条件。
2.平衡物体中的极值问题极值是指研究的平衡问题中某物理量变化时出现的最大值或最小值。
中学物理的极值问题可分为简单极值问题和条件极值问题,区分的依据就是是否受附加条件限制。
若受附加条件限制,则为条件极值。
3.平衡中的临界极值问题四种方法临界问题往往是和极值问题联系在一起的.解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件.要特别注意可能出现的多种情况.解决临界极值问题的四种方法(1)假设推理法。
假设推理法是解决临界问题的有效方法,即先假设达到临界条件,然后再结合平衡条件及有关知识列方程求解。
(2)解析法:根据物体的平衡条件列出平衡方程,在解方程时采用数学方法求极值.通常用到的数学知识有二次函数求极值、均分定理求极值、讨论分式极值、三角函数极值,以及几何法求极值等。
(3)图解法:此种方法通常适用于物体只在三个力作用下的平衡问题.首先根据平衡条件作出力的矢量三角形,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量三角形进行动态分析,确定其最大值或最小值.此法简便、直观。
例如:在三角形中一条边a的大小和方向都确定,另一条边b只能确定其方向(即a、b间的夹角θ确定),欲求第三边c的最小值,则必有c垂直于b时最小,且c=asinθ,如下图所示。
(4)极限法:极限法是一种处理极值问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(如“极大”“极小”等),从而把比较隐蔽的临界现象暴露出来,快速求解.4.解决临界极值问题的基本步骤是:(1)选对象:明确研究对象;(2)析受力:对对象进行受力分析,画出物体的受力示意图;(3)列方程:结合临界条件、极限条件、平衡方程、几何条件列方程;(4)求结果:根据数学方法计算结果并讨论。
平衡中的临界和极值问题所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。
求解平衡的临界问题一般用极限法。
极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选取某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。
在平衡中最常见的临界问题有以下两类: 一、以弹力为情景1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。
2. 绳子断与不断的临界条件是:作用力达到最大值;绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。
例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。
解:作出A 受力图如图所示,由平衡条件有:F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为:N F N 33403320≤≤变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断?(2)要使细线不被拉断,拉力F 不得超过多少?变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承受的最大拉力均为T ,则每根绳的长度不得短于__ ____.例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。