矩阵秩的基本不等式
- 格式:doc
- 大小:127.00 KB
- 文档页数:1
高等代数第二次大作业1120133839 周碧莹30011303班矩阵的秩的性质1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。
2.矩阵的初等行变换不改变矩阵的行秩。
证明:设矩阵A的行向量组是a1,…,as.设A经过1型初等行变换变成矩阵B,则B的行向量组是a1,…,ai,kai+aj,…,as.显然a1,…,ai,kai+aj,…,as可以由a1,…,as线性表处。
由于aj=1*(kai+aj)-kai,因此a1,…,as可以由a 1,…,ai,kai+aj,…,as线性表处。
于是它们等价。
而等价的向量组由相同的秩,因此A的行秩等于B的行秩。
同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。
3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。
证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式?第一个问题:设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。
而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。
显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。
B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价!第二个问题以一个具体例子来说明。
例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。
在数学中,分块矩阵初等行变换求秩的不等式是一个重要的概念。
通过对分块矩阵进行初等行变换,我们可以得到一个新的矩阵,并通过对这个新矩阵进行求秩,得到一些重要的不等式关系。
接下来,我将会详细探讨这一主题,并按照从简到繁的方式进行解释。
一、分块矩阵的定义让我们回顾一下分块矩阵的定义。
一个分块矩阵是由若干个子矩阵组成的大矩阵。
通常情况下,这些子矩阵可以是任意大小的矩阵,它们之间通过分块符号进行分割。
一个分块矩阵可以表示为:\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix} \]其中 \(A_{11}\)、\(A_{12}\)、\(A_{21}\)、\(A_{22}\) 分别是子矩阵。
这种表示方法在矩阵分析和线性代数中经常被使用,特别是在矩阵的运算和性质分析中。
二、分块矩阵初等行变换接下来,让我们来探讨分块矩阵的初等行变换。
我们知道,在矩阵的运算中,初等行变换是一种通过交换行、数乘行、行加减倍数行来改变矩阵的运算方法。
对于分块矩阵,我们可以运用相似的方法进行初等行变换。
对于一个分块矩阵:\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix} \]我们可以对其中的子矩阵 \(A_{11}\)、\(A_{12}\)、\(A_{21}\)、\(A_{22}\) 分别进行初等行变换,如交换行、数乘行、行加减倍数行等操作。
通过这些初等行变换,我们可以得到一个经过变换的新矩阵。
三、求秩的不等式关系有了经过初等行变换的新矩阵,我们可以通过对其进行求秩来得到一些不等式关系。
根据矩阵求秩的性质,我们可以得到如下的不等式关系:\[ rank(A) + rank(B) - n \leq rank \begin{pmatrix} A & B\end{pmatrix} \leq rank(A) + rank(B) \]其中,\(rank(A)\) 和 \(rank(B)\) 分别表示矩阵 \(A\) 和 \(B\) 的秩,\(n\) 表示矩阵的列数。
矩阵的秩的相关不等式的归纳小结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII矩阵的秩的相关不等式的归纳小结林松(莆田学院数学系,福建,莆田)摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。
关键词:矩阵的秩,矩阵的初等变换引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。
利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。
本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。
一基本的定理1 设A是数域P上n m⨯矩阵,于是⨯矩阵,B是数域上m s秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩2设A与B是m n⨯矩阵,秩(A±B)≤秩(A)+秩(B)二常见的秩的不等式1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。
当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。
当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n2设A 为m n ⨯矩阵,B 为n s ⨯矩阵,证明不等式r(AB)≤r(A)+r(B)-n证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于000S EB A AB A E E E B ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭而 0S EB E ⎛⎫ ⎪-⎝⎭可逆,故r(A)+r(B) ≥ 秩 0A E B ⎛⎫⎪⎝⎭ =秩 0A AB E ⎛⎫ ⎪⎝⎭=秩 00AB E ⎛⎫⎪⎝⎭=r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E )证:因为0A E B E B E --⎛⎫⎪-⎝⎭00B E ⎛⎫ ⎪⎝⎭00AB E B E -⎛⎫= ⎪-⎝⎭故秩(AB-E )≤秩00AB E B E -⎛⎫ ⎪-⎝⎭≤秩0A E B E B E --⎛⎫⎪-⎝⎭=秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E )4 设A ,B ,C 依次为,,m n n s s t ⨯⨯⨯的矩阵,证明r(ABC) ≥ r(AB) + r(BC) - r(B)证:设 ,s t E E 分别为,s,t 阶单位矩阵,则由于0AB ABC B ⎛⎫⎪⎝⎭0st E C E ⎛⎫ ⎪-⎝⎭=0AB B BC ⎛⎫ ⎪⎝⎭且0s t E C E ⎛⎫⎪-⎝⎭是可逆矩阵,故 r(AB) + r(BC)≤秩0AB B BC ⎛⎫ ⎪⎝⎭=秩0ABABC B ⎛⎫⎪⎝⎭=秩00ABC B ⎛⎫⎪⎝⎭= r(ABC) + r(B) 从而r(ABC) ≥r(AB) + r(BC) - r(B)5 设A ,B 都是n 阶矩阵,证明;r( A B + A + B ) ≤ r( A ) + r ( B ) 证明:r( AB + A + B)=r( A (B+E) + B) 利用基本定理二≤r( A (B + E)) + r(B) 利用基本定理一 ≤r( A ) + r( B )6 设A ,C 均为m n ⨯矩阵,B ,D 均为n s ⨯矩阵,证明 r ( A B – C D )≤ r ( A-C ) + r ( B - D )证明:根据分块矩阵的乘法可知000mn E C A C E B D -⎛⎫⎛⎫⎪⎪-⎝⎭⎝⎭0n s E B E ⎛⎫ ⎪⎝⎭=0A C AB CD B D --⎛⎫⎪-⎝⎭由此易知r (A-C )+r (B-D )=r 0A CAB CD B D --⎛⎫⎪-⎝⎭≥r(AB-CD)从而得r (AB-CD ) ≤ r (A-C ) + r (B-D )三 不等式等号成立的探讨1 设A ,B 分别为m n ⨯和n m ⨯矩阵,则()()()r AB =r A +r B -n 的充分条件为:A 0A 0r =r EB 0B ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦证明:由E -A A 0E -B 0-AB E -B 0-AB ==0E E B 0E E B 0E E 0⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦得:A 00-AB r =r E B E0⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ ()()()0-AB A 0r =r AB +n r =r A +r B E 0E B ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦又, ∴()()()r AB =r A +r B -n2 设A ,B 分别为m n ⨯和n m ⨯矩阵,则()()()r AB =r A +r B -n 的充分必要条件为存在矩阵X 、Y ,使得nXA +BY =E证明:根据题三 1,只需要证明nXA +BY =E A 0A 0r =r X Y E B 0B ⎡⎤⎡⎤⇔⎢⎥⎢⎥⎣⎦⎣⎦存在、,使得m n n n nm m n E 0A 0E 0E 0A 0=-X E E B -Y E -Y E -AX B A 0E -XA -BY B ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⇐⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦由当 n XA +BY =E 时,A 0A 0r =r E B 0B ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦∴()()()r AB =r A +r B -n12200,0000rSEE AQ P BQ ⎛⎫⎛⎫⇒== ⎪ ⎪⎝⎭⎝⎭1设 P 1122000000P Q A P Q B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则 11220000P A Q P B Q ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭112200P AQ P BQ ⎛⎫= ⎪⎝⎭000000000000r SE E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(1)112200000P Q A P Q E B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11222000P A Q P P B Q ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭ 1121220P AQ P Q P BQ ⎛⎫=⎪⎝⎭12340000000000r S E C C E C C ⎛⎫⎪⎪= ⎪⎪⎝⎭(2) 对式(2)右端的方阵作行初等变换,可消去1C ,2C ,3C ,由于式(1),式(2)右端方阵秩相等,故在消去1C ,2C ,3C 时也消去了4C ,对式(2)右端分块记为120FC F ⎛⎫ ⎪⎝⎭ 其中1F =00rE C ⎛⎫ ⎪⎝⎭, 2F =00SE C ⎛⎫ ⎪⎝⎭, C=1234C C C C ⎛⎫ ⎪⎝⎭ 于是上述消去1C 的行变换相当于 1000C -⎛⎫ ⎪⎝⎭000rE ⎛⎫⎪⎝⎭+1234C C C C ⎛⎫ ⎪⎝⎭=2340C C C ⎛⎫ ⎪⎝⎭消去其余234,,C C C 有类似的结果,这样初等变换就相当于存在矩阵S ,T ,使S 1F =T 2F +C =0,即1122210SP AQ P BQ T P Q ++= 从而有 令得 n XA BY E +=3 设 A ,B ,分别为 ,,m n n l l m ⨯⨯⨯矩阵,而B 的一个满秩分解是B=HL ,即H 是列满秩矩阵,L 是行满秩矩阵,则r(ABC)=r(AB)+r(BC)-r(B)的充要条件是存在矩阵X ,Y使得r XAH LCY E +=证明:设r (B )=r ,因为B=HL 是满秩分解 所以 有r(AB) = r(AHL) = r(AH) r(BC) = r(HLC) = r(LC) 则r(ABC) = r(AB) + r(BC) - r(B)⇔ r(AHLC) = r(AH) + r(LC) - r 又由上题 得r(AHLC) = r(AH) + r(LC) - r⇔矩阵X,Y 使得 r XAH LCY E += 所以 3得证4 设A 为n 阶矩阵,证明如果 2A = E ,那么r ( A + E ) + r ( A – E )= n证明: ( A + E )( A – E ) =2A + A – A – E = E – E = 0 ∴r ( A + E )+ r ( A – E )≤ nr( A + E ) + r( A – E ) ≥ r( A + E + A - E) = r(2A) = r(A)2A = E∴2A = E,即A≠0∴ r(A)= nr( A + E) + r( A - E) ≥n故 r( A + E )+ r( A - E) = n5 设A为n阶矩阵,且2A = A,证明 r(A)+ r(A-E)= n证明:由2A = A,可得 A( A – E )= 0由题一 1知,r( A ) + r( A - E)≤ n又因为 E-A和A-E 有相同的秩n = r( E ) = r( A + E – A ) ≤ r ( A ) + r ( E – A ) 从而 r( A ) + r( A – E ) = n6 设A是阶矩阵,则3A = A的充分必要条件是r(A)= r(A-2A)+ r(A+2A)证明:必要性一方面,由3A = A⇔(E-A)A(E+A)=0 由题二 4知0 ≥ r[(E-A)A] + r[ A (E+A)] - r(A)即r(A)≥ r(A-2A)+r(A+2A)另一方面,由r(A-2A)+r(A+2A)≥r[(A-2A)+(A+2A)] = r(2A)= r(A)所以 r(A)= r(A-2A)+ r(A+2A)充分性若r(A)= r(A-2A)+r(A+2A)设r(A) = r,A的满秩分解是A = HL,则存在 X,Y使(2X )H =r E ,L (2Y )= r E 成立则 X (E-A )H +L (E-A )Y=(XH + LY )-(XHLH - LHLY )=r E -0 = r E由题三3得 r[(E-A )A(E+A)]=r[(E-A) A] + r[A (E+A)]- r(A) = 0即得(E-A )A (E+A )=0 从而得 3A = A参考文献:[1] 张禾瑞 .高等代数(第二版)[M].高等教育出版社 [2] 杨子胥.高等代数习题解[M].山东科技出版社 [3] 李师正.高等代数解题方法与技巧[M].高等教育出版社。
矩阵的秩的运算法则矩阵的秩是线性代数中一个重要的概念,它可以帮助我们判断矩阵的性质和解决一些实际问题。
在矩阵的秩的运算中,有一些基本的法则和规则,下面我将为大家介绍一下。
首先,我们需要明确什么是矩阵的秩。
矩阵的秩是指矩阵中线性无关的行或列的最大个数。
换句话说,矩阵的秩就是矩阵中非零行或非零列的最大个数。
我们用r(A)表示矩阵A的秩。
接下来,我们来看一下矩阵的秩的运算法则。
首先是矩阵的加法。
如果两个矩阵A和B的秩相等,即r(A) = r(B),那么它们的和矩阵A + B的秩也相等,即r(A + B) = r(A) = r(B)。
这个法则告诉我们,矩阵的秩在加法运算中是保持不变的。
其次是矩阵的乘法。
如果两个矩阵A和B相乘,那么它们的秩满足以下关系:r(AB) ≤ min{r(A), r(B)}。
也就是说,两个矩阵相乘后的秩不会超过原矩阵的秩的较小值。
这个法则告诉我们,矩阵的秩在乘法运算中是有限制的。
再次是矩阵的转置。
如果矩阵A的秩为r(A),那么它的转置矩阵A^T的秩也为r(A^T) = r(A)。
这个法则告诉我们,矩阵的秩在转置运算中是保持不变的。
最后是矩阵的行变换。
对于一个矩阵A,我们可以进行一系列的行变换,如交换两行、某一行乘以一个非零常数、某一行加上另一行的若干倍等。
这些行变换不会改变矩阵的秩。
也就是说,经过行变换后的矩阵与原矩阵的秩相等。
综上所述,矩阵的秩的运算法则包括矩阵的加法、乘法、转置和行变换。
在矩阵的加法中,秩保持不变;在矩阵的乘法中,秩有一定的限制;在矩阵的转置中,秩保持不变;在矩阵的行变换中,秩也保持不变。
矩阵的秩的运算法则在线性代数的学习和应用中起着重要的作用。
通过运用这些法则,我们可以更好地理解和分析矩阵的性质,解决实际问题。
同时,这些法则也为我们提供了一些计算矩阵秩的方法和技巧,使我们能够更加高效地进行矩阵的秩运算。
总之,矩阵的秩的运算法则是线性代数中的重要内容,它们帮助我们理解和分析矩阵的性质,解决实际问题。
第28卷第1期2021年3月辽东学院学报(自然科学版)Journal of Eastern Liaoning University(Natural Science Edition)Vol.28No.1Mar.2021[基础科学与应用】DOI:10.14168/j.issn.1673-4939.2021.01.12关于矩阵秩的几个重要不等式黄述亮①(滁州学院数学与金融学院,安徽滁州239001)摘要:针对学生学习矩阵秩的不等式比较困难的问题,综合运用演绎、分析与综合、化归的数学论证方法对秩的估计、秩的降阶及互素多项式等方面的重要不等式进行研究,并举例说明这些不等式在分块矩阵、线性方程组及判断线面位置关系等问题中的应用,这将有助于学生更好地掌握矩阵的基本理论,提高学生的抽象思维能力和逻辑思维能力。
关键词:矩阵的秩;初等变换;齐次线性方程组中图分类号:0153.3文献标志码:A文章编号:1673-4939(2021)01-0061-05众所周知,在线性代数(或高等代数)课程中最主要的内容就是矩阵及其相关运算。
在学习矩阵的过程中会遇到的一个非常重要的概念——矩阵的秩。
在一般的教科书和文献中,习惯上用数学符号rank(A)来表示一个矩阵的秩,其定义是矩阵A 中的某个非零子式的最高阶数。
考虑到向量组、向量空间等概念,对矩阵分别进行行分块和列分块,且设A=(兔心,…,a”)=(肉,0;,…屈),则下列几个论断等价:(l)rank(A)=r;(2)rank(兔,他,…,a”)=r;(3)rank(0;,0:,…屈)=r;(4)dim®?如aj,a2,•••,a n|;(5)dimSpan W 嵐,…,0:}=r;(6)矩阵4的阶梯形矩阵中非零行(列)的行(列)数为r o矩阵的秩在很多领域中具有重要的理论意义和实际应用价值,比如在通信复杂性领域中,函数的通信矩阵的秩可以给出计算函数所需的通信量的界限。
此外,利用矩阵的秩可以定义数学中的等价关系,因此一个数域F上的全体"阶矩阵M”(F)可以被划分成n+1个子集(即等价类)的不交并M(F) =U U…U T”,其中7;={A e M”(F)I rank(4) =i}o换言之,矩阵的秩可以实现对全体矩阵的分类,这对进一步研究矩阵有着重要的意义。
矩阵的几个不等式1. 矩阵的不等式定义:矩阵的不等式指的是一组矩阵的元素之间的比较,它可以是大于、小于或等于关系。
矩阵的不等式可以表示为A≤B,其中A和B分别是两个矩阵,A≤B表示A中的每个元素都小于等于B中的对应元素。
## 2. 矩阵的不等式性质1. 对于任意的n阶矩阵A,有A+A≥A;2. 对于任意的n阶矩阵A,有A+A≤2A;3. 对于任意的n阶矩阵A,有A+A≠A;4. 对于任意的n阶矩阵A,有A+A≠2A;5. 对于任意的n阶矩阵A,有A+A≥2A;6. 对于任意的n阶矩阵A,有A+A≤A;7. 对于任意的n阶矩阵A,有A+A≠0;8. 对于任意的n阶矩阵A,有A+A≠-A;9. 对于任意的n阶矩阵A,有A+A≥0;10. 对于任意的n阶矩阵A,有A+A≤-A。
3. 矩阵的不等式应用矩阵的不等式应用可以用于多种情况,如矩阵的范数估计、矩阵的特征值估计、矩阵的迹估计、矩阵的奇异值估计、矩阵的乘积估计等。
此外,矩阵的不等式应用还可以用于求解线性方程组、求解矩阵的逆等问题。
此外,矩阵的不等式应用还可以用于矩阵的正定性判断、矩阵的正交性判断等。
#### 4. 矩阵的不等式推导1. 对于矩阵A,若A的行列式不为零,则有A的逆矩阵存在;2. 若A的行列式为零,则A的逆矩阵不存在;3. 对于任意矩阵A,有A+A的逆矩阵存在;4. 对于任意矩阵A,有A*A的逆矩阵存在;5. 对于任意矩阵A,有A*A+A的逆矩阵存在;6. 对于任意矩阵A,有A*A*A的逆矩阵存在;7. 对于任意矩阵A,有A*A*A+A的逆矩阵存在;8. 对于任意矩阵A,有A*A*A*A的逆矩阵存在;9. 对于任意矩阵A,有A*A*A*A+A的逆矩阵存在。
5. 矩阵的不等式变换:矩阵的不等式变换是指将一个矩阵中的不等式变换为另一个矩阵,这样可以更容易地解决矩阵的不等式问题。
变换的方法有很多,比如可以使用行列式,矩阵乘法,矩阵加法,矩阵转置等。
课程:高等代数第2.6.1页课程:高等代数第2.6.2页课程:高等代数第2.6.3页课程:高等代数第2.6.4页课程:高等代数第2.6.5页编者按:大地涵藏万物,孕育生命,被誉为人类的母亲。
但是,近年来,伴随我国工业化的快速发展,大地不断遭到各种污染的伤害。
仅仅因土壤污染防治不足、环境监管乏力,导致的食品药品安全事件就频频发生,2008年以来,全国已发生百余起重大污染事故。
目前我国大地污染现状严峻,成因十分复杂,形成令人扼腕的“大地之殇”。
《经济参考报》以此为主题,探寻大地污染背后所触及的我国农业、工业、城市化进程中关于生存与发展的一系列深层矛盾与两难抉择,并以“大地之殇”系列报道的形式在“深度”版推出,敬请关注。
大地之殇一·黑土地之悲占全国粮食总产五分之一的东北黑土区是我国最重要的商品粮基地,但一个并不为多数人了解的严峻事实是,支撑粮食产量的黑土层却在过去半个多世纪里减少了50%,并在继续变薄,几百年才形成一厘米的黑土层正以每年近一厘米的速度消失。
照此速度,部分黑土层或将在几十年后消失殆尽,东北这一中国最大粮仓的产能也将遭受无法挽回的损失。
□记者孙彬管建涛连振祥吉哲鹏娄辰李松南京哈尔滨兰州昆明济南重庆报道毒土:GDP至上的恶果当前,我国土壤污染出现了有毒化工和重金属污染由工业向农业转移、由城区向农村转移、由地表向地下转移、由上游向下游转移、由水土污染向食品链转移的趋势,逐步积累的污染正在演变成污染事故的频繁爆发。
日益加剧的污染趋势可能还要持续30年“目前,我国土壤污染呈日趋加剧的态势,防治形势十分严峻。
”多年来,中国土壤学会副理事长、中国农业科学院研究员张维理教授一直关注我国土壤污染问题“我国土壤污染呈现一种十分复杂的特点,呈现新老污染物并存、无机有机污染混合的局面。
”“现在我国土壤污染比各国都要严重,日益加剧的污染趋势可能还要持续30年。
”中国土壤学专家,南京农业大学教授潘根兴告诉《经济参考报》记者,这些污染包括随经济发展日益普遍的重金属污染、以点状为主的化工污染、塑料电子废弃物污染及农业污染等。
矩阵不等式矩阵不等式在近几年的高考中是一个热点,它常与导数、数列相结合。
通过学习掌握解答此类问题的基本思想和方法对今后的学习很有帮助。
所谓“矩阵”就是含有未知数的方程组,而不等式就是一种方程组。
把矩阵写成方程组来研究具体的不等式是非常简便易行的办法。
矩阵的秩即是不等式的解集,当然矩阵的秩越大解集也就越大了。
因为每个矩阵都包含两个元素,所以每个矩阵都至少有一个零向量。
任何满足条件的多项式都能表示为不等式组的形式,这些多项式称为函数。
如果仅仅根据多项式的系数和不等式的解集的关系,我们可以找出许多不等式,但这样做太麻烦了,还容易产生误解。
因此,人们希望寻找更简单的方法来确定方程组的系数和不等式的解集。
一般地说,要使用数值方法。
其实数值方法的原理并不复杂,主要涉及的计算方法有迭代法、牛顿法、插值法、数值积分法等。
用这些方法处理求不等式的解集是十分直观、迅速的,从而显著提高了运算效率。
矩阵不等式的求解属于求函数的极值或最值,一般情况下求解较为困难,特别是选择适宜的初始值、求解过程中的迭代步骤、代入方法以及解决可行性问题的变换手段等。
解答这类问题时,首先要明确已知量与待求量的范围,也就是问什么?求哪些量?怎么去求呢?总的原则:能用初等变换化为已知量的等价或不等式,尽量利用初等变换;若不能转化则将待求量代入原方程组,再判断原方程组是否有实数根。
遇到二次不等式,应分类讨论,不能一刀切,特殊情况除外。
如果你觉得有用请记得收藏哦!谢谢!首先应注意不同级别之间的关系,对于复杂方程组,需采用列写一般的线性方程组的方法(本节没有介绍),反之比较简单。
矩阵不等式的数学模型:令 v 是一个方程组 ax= b 的一个系数矩阵,则ax= b 关于不等式 p (a>0)有下面的基本结论:1. a≥0时, p (a<0)=0。
2.当a≤0且 a>0时,p (a)≤0;当 a<0时,p (a)≥0。
3. a≥0时,p (x<0)≥0。
矩阵秩的等式与不等式的证明及应用矩阵是高等代数的一个重要概念,也是线性代数中的主要研究对象,同时也是一种应用广泛的数学工具.不管是在数学学习还是实际问题中,我们常常会遇到许多比较复杂的计算问题,而使用矩阵来解决这些难题,往往会使问题简单化.早在古代,我国的《九章算术》就已经对矩阵有了初步的描述.而矩阵的理论起源,可追溯到18世纪.高斯在1801年、艾森斯坦在1844-1852年,先后把一个线性变换的全部系数用一个字母来表示,艾森斯坦还强调乘法次序的重要性.这些工作都孕育了矩阵的思想,但矩阵的正式定义直到1858年才由凯莱给出来.凯莱在《矩阵论的研究报告》中全面阐述了矩阵的一些理念,同时他还在文中给出了许多矩阵的运算法则以及矩阵转置的定义,证明了矩阵加法中的可交换性与可结合性,更为重要的是他还给出了伴随矩阵、矩阵可逆的概念.由于凯莱的奠基性工作,一般认为他是矩阵理论的创始人.而矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.对于矩阵的秩的等式与不等式,近年来有一些学者对其进行了研究.张英,乔世东利用同解方程组、标准形、线性空间和同态基本定理来证明矩阵秩的一些性质;王廷明利用构造分块矩阵并通过广义初等变换的方法,证明矩阵秩的(不)等式;殷倩把分散的知识点及重要的常用结论整合在一起,归纳整理出若干常用有效的证明方法;徐小萍给出五个矩阵秩的不等式,并利用代数理论对其进行证明,然后用一些典型例题对其应用进行分析.在前人研究的基础上,本文进一步系统的探究了矩阵秩的等式与不等式及其应用.首先介绍矩阵秩的等式与不等式的研究背景和国内外的研究现状,其次介绍矩阵秩的定义与简单性质,然后给出一些矩阵秩的等式与不等式的证明,最后通过例子研究其在多方面的应用。
11 预备知识1.1 矩阵的定义定义1.1 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==所排列成的m 行n 列的数表111212122212n n m m mna a a a a a a a a称为m 行n 列的矩阵,简称m n ⨯矩阵.记作111212122212,n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(1.1) 简记为()ij m n A a ⨯=或m n A ⨯,这m n ⨯个数称为A 的元素.当m n =时,矩阵A 称为n 阶方阵.例如,431259370⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦就是一个3阶方阵.1.2 矩阵秩的定义定义1.2 通过在m n ⨯矩阵A 中任取k 行k 列(,k m k n ≤≤)的行列交叉处的2k 个元素,而不改变它们在A 中所处的位置顺序而得到的k 阶行列式,称为矩阵A 的k 阶子式. m n ⨯矩阵A 的k 阶子式共有kkm n C C ⋅个.定义 1.3 如果矩阵A 有一个不为零的r 阶子式D ,且所有1r +阶子式都为零,那么D 称为矩阵A 的最高阶非零子式,这个数r 称为矩阵A 的秩,记作()R A ,并且规定零矩阵的秩等于零.2 矩阵秩的性质在矩阵秩的问题当中,有些问题仅依靠定义来解决比较复杂和困难,而利用性质则会简单些,下面我们总结和归纳出了矩阵秩的一些性质.性质2.1 矩阵的行秩与列秩相等.证明 考虑线性方程组0AX =,首先如果未知数的个数超过A 的行秩,则它有非零解.设m n ⨯阶矩阵A 的行秩为r ,考虑方程组0AX =,它由m 个方程n 个未知数组成.从A 的行向量中任意选取r 个线性无关的行向量,重新组合成矩阵B ,所以方程组0AX =和0BX =同解.在这种情况下,如果B 的列数大于行数,那么方程组0BX =必有非零解,因此0AX =也有非零解.接着证明行秩等于列秩.设m n ⨯阶矩阵A 的行秩为r ,列秩为s .考虑A 的任意1r +个列向量组成的矩阵C ,因为C 的行秩小于或等于r (因为C 的行向量是由A 的行向量的一部分分量组成的),所以CX=0存在非零解,这表明这1r +个列向量是线性相关的.所以A 的列秩最大为r ,即s r ≤.同理可证r s ≤,因此s r =.性质2.2 初等行(列)变换不改变矩阵的秩.数域P 上的矩阵的初等行(列)变换是指以下三种变换: (1)用数域P 中的一个非零数k 乘以矩阵的某一行(列); (2)将矩阵的某一行(列)的c 倍加到另一行(列); (3)交换矩阵中两行(列)的位置.证明 设m n ⨯矩阵A 通过一次初等行变换转变为m n ⨯矩阵B ,且()1R A r =,()2R B r =.1.初等交换变换:i jr rA B ↔→(交换矩阵的第i 行与第j 行)由于矩阵A 中的任意11r +阶子式均全为零,因此矩阵B 的任意11r +阶子式也为零.所以有矩阵B 中任11r +阶子式等于任意非零常数k 与矩阵A 的某个11r +阶子式的乘积.2.初等乘法变换:ikr A B →(将矩阵的第i 行与用非零常数k 相乘)由于矩阵A 中的任意11r +阶子式全为零,因此矩阵B 的任意11r +阶子式也为零.所以有矩阵B 中任何11r +阶子式等于任意非零常数k 与A 的某个11r +阶子式的乘积.3.初等加法变换:i j r krA B +→(将矩阵的第j 行的k 倍加到矩阵的第i 行上) 对于矩阵B 的任意11r +阶子式1B .(1)若1B 不包含矩阵B 的第i 行或同时包含第j 行与第i 行,那么由行列式的性质得11+1r B D =这里的1+1r D 为矩阵A 的任意11r +阶子式;(2)若1B 包含第i 行但不包含第j 行,那么由行列式的性质得11111r r B D k C ++=+这里的11r D +,11r C +均为矩阵A 的11r +阶子式。
矩阵秩的基本不等式定理1:设,m n A R ∈,,n s B R ∈,则{}()()()min (),()r A r B n r AB r A r B +-≤≤。
证明:由于0Bx =的解一定是0ABx =的解,因此0Bx =的基础解系为0ABx =的基础解系的一部分。
于是,()()s r B s r AB -≤-,即()()r AB r B ≤。
()()()()()()T T T T r AB r AB r B A r A r A ==≤=。
这样,我们就证明了()()r AB r A ≤,()()r AB r B ≤,故{}()min (),()r AB r A r B ≤。
我们假设1x ,2x ,……,()s r B x -,()1s r B x -+,……,()s r AB x -为0ABx =的基础解系。
其中,0i Bx =,1()i s r B ≤≤-;0j Bx ≠,()1()s r B j s r AB -+≤≤-。
下面,我们来证明向量组{}()()1s r AB j j s r B Bx -=-+是线性无关的。
事实上,假设数j k , ()1()s r B j s r AB -+≤≤-,使得()()1()s r AB j j j s r B k Bx -=-+∑,于是()()10s r AB j j s r B B x -=-+=∑。
这样,()()10s r AB j j s r B x -=-+=∑为0Bx =的解。
于是,存在数j k ,1()j s r B ≤≤-,使得 ()()()11()s r AB s r B j j j j s r B j x k x --=-+==-∑∑,即()10s r AB j j j k x -==∑。
由于向量组{}()1s r AB j j x -=线性无关,因此,0j k =,()1()s r B j s r AB -+≤≤-。
于是,向量组{}()()1s r AB j j s r B Bx -=-+线性无关。
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
矩阵加法秩不等式证明本文将证明一个矩阵加法秩不等式,即对于任意两个矩阵A和B,有rank(A+B) ≤ rank(A) + rank(B)。
首先,我们可以将A和B按列拼接成一个新的矩阵C,即C = [A|B]。
因此,我们可以将A+B表示为C乘以一个向量[1;1],即(A+B) = C[1;1]。
接下来,我们考虑对C进行列变换,使得C的前rank(A)列构成一个线性无关的列向量组,后面的列向量为线性相关。
这可以通过对C进行初等列变换实现,而不改变矩阵乘积C[1;1]的值。
我们将变换后的矩阵记为C',则C'的前rank(A)列构成一个线性无关的列向量组,后面的列向量都可以表示为前面列向量的线性组合。
因此,我们可以将C'表示为C' = [A'|B'],其中A'为C'的前rank(A)列,B'为C'的后面的列向量。
现在,我们将C'乘以向量[1;1],即有(A+B) = C'[1;1],而C'的第i+1列可以表示为A'的线性组合,因此可以得到:(A+B) = C'[1;1] = A'[1;1] + B'[1;1] = A[1;1] + (B-A')[1;1]由于B-A'的每一列都可以表示为A和B的对应列的线性组合,因此B-A'的秩不超过rank(B)+rank(A'),即rank(B-A') ≤rank(B)+rank(A')。
因此,我们可以得到:rank(A+B) ≤ rank(A)+rank(B-A') ≤rank(A)+rank(B)+rank(A') ≤ rank(A)+rank(B)因此,我们证明了矩阵加法秩不等式。
1
矩阵秩的基本不等式
定理1:设,m n A R ∈,,n s B R ∈,则{}()()()min (),()r A r B n r AB r A r B +-≤≤。
证明:由于0Bx =的解一定是0ABx =的解,因此0Bx =的基础解系为0ABx =的基础解系的一部分。
于是,()()s r B s r AB -≤-,即()()r AB r B ≤。
()()()()()()T T T T r AB r AB r B A r A r A ==≤=。
这样,我们就证明了()()r AB r A ≤,()()r AB r B ≤,故{}()min (),()r AB r A r B ≤。
我们假设1x ,2x ,……,()s r B x -,()1s r B x -+,……,()s r AB x -为0ABx =的基础解系。
其中,0i Bx =,1()i s r B ≤≤-;0j Bx ≠,()1()s r B j s r AB -+≤≤-。
下面,我们来证明向量组{}
()()1
s r AB j j s r B Bx -=-+是线性无关的。
事实上,假设数j k ,
()1()s r B j s r AB -+≤≤-,使得
()()1
()s r AB j j j s r B k Bx -=-+∑
,于是()
()1
0s r AB j j s r B B
x -=-+=∑。
这样,
()
()1
0s r AB j j s r B x -=-+=∑
为0Bx =的解。
于是,存在数j k ,1()j s r B ≤≤-,使得
()()
()1
1
()s r AB s r B j j j
j s r B j x k x --=-+==
-∑
∑,即()1
0s r AB j j j k x -==∑。
由于向量组{}
()1
s r AB j j x -=线性无关,因
此,0j k =,()1()s r B j s r AB -+≤≤-。
于是,向量组{}()
()1
s r AB j j s r B Bx -=-+线性无关。
又由于()0j j A Bx ABx ==,()1()s r B j s r AB -+≤≤-,因此{}()
()1
s r AB j j s r B Bx -=-+为
0Ax =的基础解系的一部分。
于是,
[]()()11()()()s r AB s r B r B r AB n r A ---++=-≤- 即()()()r AB r A r B n ≥+-。
推论1:若,m n A R ∈,,n s B R ∈满足0AB =,则()()r A r B n +≤。
证明:0()()()r AB r A r B n =≥+-,于是()()r A r B n +≤。