第二章 线性时不变系统的时域分析
- 格式:ppt
- 大小:229.50 KB
- 文档页数:3
第2章 线性时不变连续系统的时域分析2.1 学习要求(1)会建立描述系统激励与响应关系的微分方程;(2)深刻理解系统的完全响应可分解为:零输入响应与零状态响应,自由响应与强迫响应,瞬态响应与稳态响应;(3)深刻理解系统的零输入线性与零状态线性,并根据关系求解相关的响应; (4)会根据系统微分方程和初始条件求解上述几种响应; (5)深刻理解单位冲激响应的意义,并会求解;(6)深刻理解系统起始状态与初始状态的区别,会根据系统微分方程和输入判断0时刻的跳变情况; (7)理解卷积运算在信号与系统中的物理意义和运算规律,会计算信号的卷积。
; 2.2 本章重点(1)系统(电子、机械)数学模型(微分方程)的建立; (2)用时域经典法求系统的响应; (3)系统的单位冲激响应及其求解;(4)卷积的定义、性质及运算,特别是()t δ函数形式与其它信号的卷积; (5)利用零输入线性与零状态线性,求解系统的响应。
2.3 本章的知识结构2.4 本章的内容摘要2.4.1系统微分方程的建立电阻:)(1)(t v Rt i R R =电感:dtt di L t v L L )()(= )(d )(1)(0t i v Lt i L tL L +=⎰∞-ττ 电容:dtt dv C t i C C )()(= ⎰+=tt L C C t i i Ct v 0)(d )(1)(0ττ 2.4.2 系统微分方程的求解 齐次解和特解。
齐次解为满足齐次方程t n t t h e c e c e c t y 32121)(λλλ+⋅⋅⋅++=当特征根有重根时,如1λ有k 重根,则响应于1λ的重根部分将有k 项,形如t k t k t k t k h e c te c e t c e t c t y 111112211)(λλλλ++⋅⋅⋅++=--- 当特征根有一对单复根,即bi a +=2,1λ,则微分方程的齐次解bt e c bt e c t y at at h sin cos )(21+= 当特征根有一对m 重复根,即共有m 重ib a ±=2,1λ的复根,则微分方程的齐次解bt e t c bt te c bt c t y at m m at h cos cos cos )(121-+⋅⋅⋅++= bt e t d bt te d bt e d at m m at at sin sin sin 121-+⋅⋅⋅+++ 特解的函数形式与激励函数的形式有关。
信号与系统第二章 连续时不变系统的时域分析小结一、系统的初始条件)()()(t y t y t y zs zi +=,令-=0t 和+=0t ,可得)0()0()0(---+=zs zi y y y)0()0()0(++++=zs zi y y y对于因果系统,由于激励在0=t 时接入,故有0)0(=-zs y ;对于时不变系统,内部参数不随时间变化,故有)0()0(+-=zi zi y y 。
因此)0()0()0(+--==zi zi y y y)0()0()0(+-++=zs y y y同理)0()0()0()()()(+--==zi j zi j j y y y)0()0()0()()()(+-++=zs j j j y y y对于n 阶系统,分别称)1,,1,0)(0()(-=-n j y j 和)1,,1,0)(0()(-=+n j y j 为系统的-0和+0初始条件。
二、零输入响应)()()()()(01110111p D p N a p a p a p b p b p b p b t f t y p H n n n m m m m =++++++++==---- )(t y zi 满足算子方程0)()(=t y p D zi ,0≥t即零输入响应)(t y zi 是齐次算子方程满足-0初始条件的解。
)(t y zi 的函数形式与齐次解的形式相同。
简单系统的零输入响应1、)()()(t ce t y p p D t zi ελλ-=⇒+=2、)()()()()(102t e t c c t y p p D t zi ελλ-+=⇒+=三、单位冲激响应)()()(t ke t h p k p H t ελλ-=⇒+= )()()(t k t h kp p H δ'=⇒=)()()(t k t h k p H δ=⇒=)()()()(t kte t h p k p H t ελλ-=⇒+= 四、零状态响应)()()(t h t f t y zs *=五、完全响应)()()(t y t y t y zs zi +=六、卷积1、定义:⎰∞∞--⋅=*τττd t f f t f t f )()()()(21212、性质:交换律:)()()()(1221t f t f t f t f *=*结合律:)()]()([)]()([)(321321t f t f t f t f t f t f **=**分配律:)()()()()]()([)(3121321t f t f t f t f t f t f t f *+*=+*时移性质:)()()(21t y t f t f =*,则)()()()()(0201021t t y t f t t f t t f t f -=*-=-*3、常用信号的卷积公式 )()()(t f t t f =*δ)()()(t f t t f '='*δ)()()()1(t f t t f -=*ε)()()(t t t t εεε=*)()1(1)()(t e at e t at at εεε---=* 七、例题例1已知某连续系统的微分方程为)(3)(2)(2)(3)(t f t f t y t y t y +'=+'+''若系统的初始条件1)0()0(='=--y y ,输入)()(t e t f t ε-=,求)(t y zi ,)(t y zs ,)(t y 。
自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。
2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。
3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。
二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。
三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。
LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。
2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。
针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。
四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。
搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。
2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。
其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。
下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。
线性系统时域分析实验报告1. 实验目的本实验旨在通过对线性系统的时域分析,加深对线性系统特性的理解和掌握。
2. 实验原理线性系统是指满足叠加性和比例性质的系统。
时域分析是通过观察系统对不同输入信号的响应来研究系统的特性。
在本实验中,我们将研究线性时不变系统(LTI)在时域上的特性,包括冲激响应和单位阶跃响应。
3. 实验步骤3.1 实验准备准备如下实验设备和材料:•示波器•函数发生器•电阻、电容等元件•连接线3.2 实验步骤1.搭建线性系统电路。
根据实验要求选择合适的电路结构,包括电阻、电容等元件。
将信号源(函数发生器)连接到输入端,示波器连接到输出端。
2.设置函数发生器和示波器。
根据实验要求,设置函数发生器以产生不同类型的输入信号,如方波、正弦波等。
调整示波器的时间和电压刻度,以便能够清晰地观察到输出信号的变化。
3.测量冲激响应。
将函数发生器的输出设置为冲激信号,并观察示波器上输出信号的变化。
记录下输出信号的波形和参数,如幅度、延迟等。
4.测量单位阶跃响应。
将函数发生器的输出设置为单位阶跃信号,并观察示波器上输出信号的变化。
记录下输出信号的波形和参数,如幅度、上升时间等。
5.分析实验结果。
根据测量的波形和参数,进一步分析线性系统的特性。
比较不同输入信号对输出信号的影响,讨论线性系统的时域特性。
4. 实验结果分析根据实验测量的波形和参数,我们可以得出以下结论:1.冲激响应:冲激响应是指系统对一个冲激信号的响应。
通过观察冲激响应的波形,我们可以了解系统的频率响应特性。
例如,当系统为低通滤波器时,冲激响应的幅度在低频时较大,在高频时逐渐减小。
2.单位阶跃响应:单位阶跃响应是指系统对一个单位阶跃信号的响应。
通过观察单位阶跃响应的波形,我们可以了解系统的稳定性和响应速度。
例如,当系统为一阶惯性系统时,单位阶跃响应的上升时间较长,而当系统为二阶系统时,单位阶跃响应的上升时间较短。
5. 实验总结通过本实验,我们深入了解了线性系统时域分析的方法和步骤。