2.8势垒贯穿
- 格式:ppt
- 大小:144.00 KB
- 文档页数:18
如果是经典力学问题,由于E >0ν,粒子不能越过势垒,将在0=x 处被势垒反弹回去。
作为量子力学问题,由于粒子的波动性,结论就不一样,可以证明,粒子将有一定概率透过势垒进入a x >区域而继续前进。
由于粒子的能量是给定的,而且粒子是从-∞=x 处射来,这是属于游离态的定态,波函数可以表示成()() /,iEt ex t x -=ψψ (2)空间波函数()x ψ满足定态薛定谔方程: ()ψψψνψmk x m 22222 =E =+''- (3) 亦即⎩⎨⎧≤≤=-''><=+''a x a x x k 0,0,0,022ψβψψψ (3a)(3b) 其中,2 mE k =)(20E m -=νβ (4) (3a )式的解为ikx e ±~ψ,考虑到“粒子由左方入射”这个边界条件,应取()⎩⎨⎧><+=-)5(,)5(0,Re b a x De a x Ae x ikx ikx ikx ψA 项为入射波,R 项为反射波,D 项为透射波。
由于并无粒子从右方入射,所以a x > 区域没有ikx e -项。
(3b )式的解为())5(0,c a x Ce Be x x x <<+=-ββψ透射概率相当大,由此可见在微观领域势垒贯穿现象是容易发生的。
隧道扫描显微镜就是用原子尺度的探针针尖在不到一个纳米的高度上扫描样品时,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流.电流强度随针尖与样品间的距离的减少而呈指数上升,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起隧道电流不断发生改变.将电流的这种改变图象化就显示出原子水平的凹凸形态。
势垒贯穿与应用 势垒贯穿设一个质量为m 的粒子,沿x 轴正方向运动,其势能为: U(x)=0 x<0 和x>a U(x)=U 0 0≤x ≤a这种势能分布称为一维势垒。
粒子在 x < 0 区域里,若其能量小于势垒高度,经典物理来看是不能越过势垒达到 x > a 的区域。
在量子力学中,情况又如果呢?为讨论方便,我们把整个空间分成三个区域: 在各个区域的波函数分别表示为ψ1 ψ2 ψ3三个区间的薛定谔方程简化为:求出解的形式是)(),0(),0(a x a x x ≥I ∏≤≤∏≤I ),()(212122x E dx x d m ϕϕ=- 0≤x ),()()(22202222x E x U dxx d m ϕϕϕ=+- ax ≤≤0),()(232322x E dxx d m ϕϕ=- a x ≥222 mEk =2021)(2 E U m k -=,0)()(12212≤=+x x k dxx d ϕϕa x x k dxx d ≤≤=-0,0)()(221222ϕϕa x x k dxx d ≥=+,0)()(32232ϕϕikxikx e A Ae -'+=ψ1x ik Be 12+=ψikx Ce =ψ3O(1)E>U 0按照经典力学观点,在E>U 0情况下,粒子应畅通无阻地全部通过势垒,而不会在势垒壁上发生反射而在微观粒子的情形,却会发生反射。
(2)E<U 0从解薛定谔方程的结果来看,在势垒内部存在波函数ψ。
即在势垒内部找出粒子的概率不为零,同时,在x>a 区域也存在波函数,所以粒子还可能穿过势垒进入x>a 区域粒子在总能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应定义粒子穿过势垒的贯穿系数是:透射波的概率密度与入射波概率密度的比值。
势垒高度U 0越低、势垒宽a 度越小,则粒子穿过势垒的概率就越大。
隧道效应是经典力学所无法解释的由于电子的隧道效应,金属中的电子并不完全局限于表面边界之内,电子密度并不在表面边界处突变为零,而是在表面以外呈指数形式衰减,衰减长度约为1nm只要将原子线度的极细探针以及被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时,它们的表面电子云就可能重叠若在样品与针尖之间加一微小电压U b 电子就会穿过电极间的势垒形成隧道电流。
海森堡不确定原理是量子力学中的一个基本原理,它指出无法同时准确确定一个粒子的位置和动量。
这一原理不仅对微观世界有着重要影响,还在解释一些宏观现象中发挥着作用。
其中,基于海森堡不确定原理解释的势垒贯穿效应是一个引人注目的话题。
势垒贯穿效应是指粒子在势垒中以一种不可思议的方式“穿透”了势垒,即使根据经典物理学,这是不可能的。
在经典物理学的观点中,粒子是不能穿透比它的能量高的势垒的,但是根据量子力学的观点,这是可能的。
海森堡不确定原理为我们提供了一种全新的解释方式,帮助我们更好地理解势垒贯穿现象。
让我们简要回顾一下海森堡不确定原理的内容。
海森堡不确定原理指出,我们无法同时准确测定一个粒子的位置和动量,即在某一时刻我们测定粒子的位置时,它的动量就会变得不确定;相反地,如果我们测定它的动量,那么它的位置将变得不确定。
这一原理揭示了微观世界的本质,并对我们理解粒子的运动方式以及与其他粒子的相互作用方式产生了深远的影响。
在量子力学中,粒子并不像经典物理学中的粒子那样具有确定的位置和动量,而是具有一定的概率分布。
也就是说,一个粒子并不一定会出现在一个特定的位置,而是有一定的概率分布,同时具有一定的动量。
这种概率性质使得粒子可以在经典物理学认为不可能通过的势垒中出现的可能性变得非常高。
接下来,让我们着眼于势垒贯穿效应。
在经典物理学中,一个粒子如果能量不够高无法通过势垒,那么它就会被势垒完全阻挡。
然而,根据量子力学的观点,粒子具有一定的概率穿越势垒。
这一现象就是势垒贯穿效应。
海森堡不确定原理解释了这一现象:即使粒子的能量低于势垒的高度,它也有一定概率出现在势垒的另一侧。
从宏观角度来看,势垒贯穿效应在一些重要的领域中有着广泛的应用。
在核聚变反应中,贯穿效应可以帮助核反应进行,从而产生能量。
在半导体器件中,贯穿效应也在电子穿越势垒时起着重要的作用。
海森堡不确定原理为我们解释了一些宏观现象背后微观机制,并且在一定程度上指导了我们的科学研究和技术应用。
势垒贯穿效应的应用
势垒贯穿效应是一种特殊的物理效应,可以广泛应用于电子学、
半导体工业、光电子学等领域。
它是指当两块不同的半导体接触时,
会形成一层势垒,阻碍电子的流动。
但当外加电压达到某一特定值时,这层势垒会被贯穿,电子开始自由流动。
这种效应可以用于制造二极管、晶体管等电子元件,也可以应用于光电探测器、太阳能电池等领域。
在半导体制造中,势垒贯穿效应可以被用来制造pn结。
pn结是
一种半导体器件,由两块接触的不同半导体组成,其中一块为p型半
导体,另一块为n型半导体。
在接触处形成的势垒使得器件只允许有
一个方向的电流通过,这种器件被广泛应用于电力电子、电子通信等
领域。
势垒贯穿效应也可以被用来制造场效应晶体管(FET),这是一
种非常重要的电子元件,被广泛应用于微电子学、电脑制造等领域。
在光电子学中,势垒贯穿效应可以被用来制造光电探测器。
这种
探测器利用势垒贯穿效应来提高光电子的感受性能,能够将光信号转
换为电信号,被广泛应用于通信、医疗、安全等领域。
最后,势垒贯穿效应也可以被用来制造太阳能电池。
太阳能电池
的工作原理就是利用势垒贯穿效应将光能转换为电能。
当光照射到太
阳能电池上时,会激发电子从势垒中跃出,形成电流。
这种技术已经
被广泛应用于环保、节能等领域,成为未来能源发展的重要方向。
势垒贯穿知识点总结一、力的作用在讨论势垒贯穿之前,首先要了解力的作用。
力是使物体产生或改变运动状态的原因,它可以改变物体的速度或形状。
力的作用可以分为接触力和距离力两种。
接触力是指力是通过物体表面上的接触而传递的,如摩擦力、压力等;而距离力是指力是通过空间中的距离而传递的,如引力、电磁力等。
二、势能和势垒势能是指物体由于位置或形状而具有的能量,它是力的一种潜在形式。
势能可以分为重力势能、弹性势能、化学势能等。
势垒是指物体之间由于受到势能的影响而存在的障碍,物体需要克服势垒才能改变其位置或形状。
势垒的存在会影响物体的运动轨迹和相互作用,是物理学中的一个重要概念。
三、势能转化在物体受到力的作用时,势能可以发生转化。
当物体受到外力作用时,势能会发生转化,例如重力势能转化为动能,化学势能转化为热能等。
这种转化过程需要满足能量守恒定律,即能量的总量在转化过程中保持不变。
势垒的存在会影响势能的转化过程,使物体需要消耗更多的能量才能克服势垒。
四、动力学动力学是研究物体运动的学科,它涉及了物体受到力的作用时的运动规律和变化过程。
在研究势垒贯穿时,动力学是一个重要的知识点。
物体受到势垒的限制时,需要克服势垒才能继续运动,这就涉及到了牛顿运动定律、动量定理、功和能量定理等动力学原理。
五、应用势垒贯穿的概念在科学研究和工程应用中具有重要意义。
在物理学和化学领域中,我们可以利用势垒的概念来研究分子间的相互作用和反应过程。
在工程领域中,势垒的概念可以应用于材料的强度分析和设计,以及机械装置的运动控制和优化。
总结:势垒贯穿涉及了多个知识点,包括力的作用、势能和势垒、势能转化、动力学等。
对势垒的研究有助于我们深入了解物体之间的相互作用和运动规律,对于科学研究和工程应用具有重要意义。
通过对势垒贯穿的研究,我们可以更好地理解自然界的规律,为技术创新和科学发展提供新的思路和方法。
量子力学中什么是势垒贯穿
势垒贯穿的根本原因是“测不准原理”,只要你认可测不准原理,就很容易理解势垒贯穿了,并不需要你去了解复杂的薛定谔方程求解。
解释如下:
能量E与时间T是不能同时测准的,时间测量越准确(时间范围越短),相应的能量就会无法很准确测量。
这里的测不准并不是技术上的问题,而是“测不准原理”产生的真实的范围变化。
也就是说,微观粒子在极短的时间内,其能量的可能值范围就会变大,因此,虽然微观粒子的能量E小于势垒U,这里的粒子能量E应该是其可能的能量范围的平均值。
在极短的时间内,粒子会有一个较小的几率处于这个能量范围的高端处(即呈现高能状态),瞬间能量超过了势垒U。
如果势垒U的空间跨度非常小,这个只能存在极短时间的高能粒子将可以越过势垒,越过势垒之后,粒子的能量重新回复到正常大小。
简单地说,就是先凭空”借”来能量,成功穿越后再把“借”来的能量”还”回去,这种凭空的能量“借还”是可以允许的,也并没有违背能量守恒原理,但必须在极短的时间之内进行,因此势垒贯穿现象能够穿越的距离也就非常小。
这种凭空的能量借还的现象也是量子理论中“虚粒子”的产生原因——在极短时间内,真空中某处会突然处于高能状态,这些能量转换成一对正粒子和反粒子,然后这对粒子又立刻相互湮灭而消失,这就是“虚粒子”。
这就是量子理论对于”真空”的描述,真空中无时不刻地大量出现这种虚粒子。
虚粒子对宏观真空不会产生任何影响,但对于微观下的量子真空却有极深远的意义。
第07讲 简单体系――势垒贯穿前面讨论了束缚态.现在开始讨论散射态。
首先讨论一维空间中势垒贯穿问题.以方势垒为;例,设势场为0(0)()0 (0,)X a U U x x x a <<⎧=⎨<>⎩ (2.8.1)(2.8.1)式中,00U>.正在经典力学中,若粒子能量E>U 。
,则粒子可能越过势场,不受势场影响,完全透射。
若粒子能量E<U 。
,则粒子完全不可能越过势场,被全部反射.但量子力学的情况却完全不同,我们将证明,无论0E U >还是0U E <,反射和透射波都会同时存在。
先讨论0E U >情况。
相应于各区的薛定谔方程是),0(2,0212122a x x mEdk k xd><==+ϕϕ,02222=+ϕϕkxdd)0()(2202a x E m U k<<-=(2.8.2)在各个不同区域的解是eA e xixi k k A 11'1-+=ϕ (x<0)eB e xixi k k B 22'2-+=ϕ(0<x<a) (2.8.3)exik C13=ϕ(x>a)其中11x ik Ae是在x<0区中的入射波和反射波和反射波,x k Be i2和x k eB i'2-是在a x <<0区中的右行的左行的波,x k Cei1是在a x >区的透射波。
由于在a x >区中无反射,因此不出现x k eC i1'-项。
利用在0=x 和a x =处波函数连续和波函数微商连续条件,得''B B A A +=+ 1122''k A k A k B k B -=-221'ik a ikaik aBe B e Ce-+= (2.8.4)221221'ik a ik aik ak B e k B e C k e--=(2.8.4)式中有四个方程式,但有五个未知数''A A B B C 、、、、,因此利用简单的代数运算,总可将''A B B C 、、、表示为A 的函数,于是得 ()()122122212124ik aik aik ak k eC A k k ek k e--=+-- (2.8.5)()()22221222212122()sin 'ik aik ai k k k aA A k k ek k e--=--+ (2.8.6)利用概率流公式(2.3.17)式,可算出相应于入射波1ikinAe x φ=的入射概率流密度Jin为J in=*2*1()2k i d d mdxdxmAφφφφ-=(2.8.7)相应于透射波ex iDk C1=ϕ的透射概率流密度JD是J D=21k mC(2.8.8)相应于反射波1'ik xR A eφ-=的反射概率流密度是Ak J mR'21 =(2.8.9)定义透射系数或称贯穿系数为 ()222122222222122124sin 4D inC J k kD J Akkk a k k===-+ (2.8.10)反射系数为()()2222122222222212212sin 'sin 4R ink k k aA J R J Akkk a k k-===-+ (2.8.11)(2.8.10)及(2.8.11)式表明,即使0E U >,在量子情况下,也不是所有粒子均能通过势垒的(图2.8.1)。