S(五章3讲)势垒贯穿
- 格式:pptx
- 大小:2.55 MB
- 文档页数:20
势垒贯穿与应用 势垒贯穿设一个质量为m 的粒子,沿x 轴正方向运动,其势能为: U(x)=0 x<0 和x>a U(x)=U 0 0≤x ≤a这种势能分布称为一维势垒。
粒子在 x < 0 区域里,若其能量小于势垒高度,经典物理来看是不能越过势垒达到 x > a 的区域。
在量子力学中,情况又如果呢?为讨论方便,我们把整个空间分成三个区域: 在各个区域的波函数分别表示为ψ1 ψ2 ψ3三个区间的薛定谔方程简化为:求出解的形式是)(),0(),0(a x a x x ≥I ∏≤≤∏≤I ),()(212122x E dx x d m ϕϕ=- 0≤x ),()()(22202222x E x U dxx d m ϕϕϕ=+- ax ≤≤0),()(232322x E dxx d m ϕϕ=- a x ≥222 mEk =2021)(2 E U m k -=,0)()(12212≤=+x x k dxx d ϕϕa x x k dxx d ≤≤=-0,0)()(221222ϕϕa x x k dxx d ≥=+,0)()(32232ϕϕikxikx e A Ae -'+=ψ1x ik Be 12+=ψikx Ce =ψ3O(1)E>U 0按照经典力学观点,在E>U 0情况下,粒子应畅通无阻地全部通过势垒,而不会在势垒壁上发生反射而在微观粒子的情形,却会发生反射。
(2)E<U 0从解薛定谔方程的结果来看,在势垒内部存在波函数ψ。
即在势垒内部找出粒子的概率不为零,同时,在x>a 区域也存在波函数,所以粒子还可能穿过势垒进入x>a 区域粒子在总能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应定义粒子穿过势垒的贯穿系数是:透射波的概率密度与入射波概率密度的比值。
势垒高度U 0越低、势垒宽a 度越小,则粒子穿过势垒的概率就越大。
隧道效应是经典力学所无法解释的由于电子的隧道效应,金属中的电子并不完全局限于表面边界之内,电子密度并不在表面边界处突变为零,而是在表面以外呈指数形式衰减,衰减长度约为1nm只要将原子线度的极细探针以及被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时,它们的表面电子云就可能重叠若在样品与针尖之间加一微小电压U b 电子就会穿过电极间的势垒形成隧道电流。
《量子力学》试题(A) 答案及评分标准一、简答题(30分,每小题5分) 1.何谓势垒贯穿?是举例说明。
答:微观粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为势垒贯穿。
它是一种量子效应,是微观粒子波粒二象性的体现。
例如金属电子冷发射、α衰变等现象都是由隧道效应产生的,利用微观粒子势垒贯穿效应的特性制造了隧道二极管。
2.波函数()t r ,ψ是应该满足什么样的自然条件?()2,t r ψ的物理含义是什么? 答:波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。
()2,t r ψ表示在t 时刻r 附近τd 体积元中粒子出现的几率密度。
3.分别说明什么样的状态是束缚态、简并态、正宇称态和负宇称态?答:当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。
若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是本征值相应的简并度。
将波函数中的坐标变量改变一个负号,若新波函数与原波函数一样,则称其为正宇称态;将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
4.物理上可观测量应该对应什么样的算符?为什么?答:物理上可观测量对应线性厄米算符。
线性是状态叠加原理要求的,厄米算符的本征值是实数,可与观测值比较。
5.坐标x 分量算符与动量x 分量算符x pˆ的对易关系是什么?并写出两者满足的测不准关系。
答:对易关系为[] i ˆ,=x px ,测不准关系为2≥∆⋅∆x p x 6.厄米算符F ˆ的本征值nλ与本征矢n 分别具有什么性质? 答:本征值为实数,本征矢为正交、归一和完备的函数系二、证明题:(10分,每小题5分)(1)证明:i z y x =σσσˆˆˆ 证明:由对易关系z x y y x i σσσσσˆ2ˆˆˆˆ=-及反对易关系0ˆˆˆˆ=+x y y x σσσσ ,得z y x i σσσˆˆˆ=上式两边乘z σˆ,得2ˆˆˆˆz z y x i σσσσ= ∵ 1ˆ2=z σ ∴ i z y x =σσσˆˆˆ (2)证明幺正变换不改变矩阵的本征值。
如果是经典力学问题,由于E >0ν,粒子不能越过势垒,将在0=x 处被势垒反弹回去。
作为量子力学问题,由于粒子的波动性,结论就不一样,可以证明,粒子将有一定概率透过势垒进入a x >区域而继续前进。
由于粒子的能量是给定的,而且粒子是从-∞=x 处射来,这是属于游离态的定态,波函数可以表示成()() /,iEt ex t x -=ψψ (2)空间波函数()x ψ满足定态薛定谔方程: ()ψψψνψmk x m 22222 =E =+''- (3) 亦即⎩⎨⎧≤≤=-''><=+''a x a x x k 0,0,0,022ψβψψψ (3a)(3b) 其中,2 mE k =)(20E m -=νβ (4) (3a )式的解为ikx e ±~ψ,考虑到“粒子由左方入射”这个边界条件,应取()⎩⎨⎧><+=-)5(,)5(0,Re b a x De a x Ae x ikx ikx ikx ψA 项为入射波,R 项为反射波,D 项为透射波。
由于并无粒子从右方入射,所以a x > 区域没有ikx e -项。
(3b )式的解为())5(0,c a x Ce Be x x x <<+=-ββψ透射概率相当大,由此可见在微观领域势垒贯穿现象是容易发生的。
隧道扫描显微镜就是用原子尺度的探针针尖在不到一个纳米的高度上扫描样品时,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流.电流强度随针尖与样品间的距离的减少而呈指数上升,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起隧道电流不断发生改变.将电流的这种改变图象化就显示出原子水平的凹凸形态。