高一数学 周练答案 试题
- 格式:docx
- 大小:12.93 KB
- 文档页数:2
高一上学期数学周练13一、选择题.请把答案直接填涂在答题卡相应位置上......... 1.已知函数()f x 的定义域为[]-2,2,则函数()()3g x f x = ( D )A .2,13⎡⎤⎢⎥⎣⎦B .[]1,1-C .123,⎡⎤-⎢⎥⎣⎦D .22,33⎡⎤-⎢⎥⎣⎦2.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有的α的值为 ( A )A.1,3B.-1,1C.-1,3D.-1,1,3 3.若幂函数()()22433m f x m m x -=--在()0,+∞上为减函数,则实数m =( B )A.41m m ==-或B.1m =-C. 21m m ==-或D. 4m =4.已知ba cb a ==⎪⎭⎫ ⎝⎛=,2.0log ,31312.0,则c b a 、、的大小关系为( B )A 、c b a <<B 、b a c <<C 、b c a <<D 、a c b <<5.已知函数()()log 4(0a f x ax a =->且1a ≠)在[]0,2上单调递减,则a 的取值范围是 ( B ) A .()0,1 B .()1,2 C .()0,2 D .[)2,+∞6.已知函数()()()()21,11log ,013aa x x f x x x ⎧->⎪=⎨-<≤⎪⎩,当1>0x ,20x >,且12x x ≠时,()()12120f x f x x x -<-,则实数a 的取值范围是 ( C )A .10,2⎛⎫ ⎪⎝⎭B .11,32⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦ 7.函数()ln 1f x x =-的图象大致是 ( B )A .B .C .D .8.已知函数()3122xxf x x =+-,若()()2120f a f a -+≤,则实数a 的取值范围为 ( D )春雨教育A. (]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭B. 1,12⎡⎤-⎢⎥⎣⎦ C. [)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦ D.11,2⎡⎤-⎢⎥⎣⎦二、多选题:(每小题给出的四个选项中,不止一项是符合题目要求的,请把正确的所有选项填涂在答题卡相应的位置上)9.(多选)下列各式比较大小,正确的是 ( BC )A .1.72.5>1.73 B .24331()22-> C .1.70.3>0.93.1D .233423()()34>10.(多选)若,,()()(y)x y R f x y f x f ∀∈+=+有,则函数()f x 满足 ( ACD )A. (0)0f = B.为偶函数()f x C.()f x 为奇函数 D.(2020)2020(1)f f = 11.(多选)下列说法正确的是 ( ABD )A .函数()24f x x x =-在区间()2,+?上单调递增B .函数()24xxf x e -=在区间()2,+?上单调递增C .函数()()2ln 4f x x x =-在区间()2,+?上单调递增D .若函数()()1f x x ax =-在区间()0,+?上单调递增,则0a ≤12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数“为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.5]4-=-,[2.1]2=.已知函数1()12=-+x xe f x e ,则关于函数()[()]g x f x =的叙述中正确的是 ( BC )A.()g x 是偶函数 B.()f x 是奇函数C.()f x 在R 上是增函数D.()g x 的值域是{}1,0,1-【解析】选BC ()()()111[012e g f e ==-=+,1111(1)[(1)][[]112121e g f e e-=-=-=-=-++,()()11g g ∴≠-,则()g x 不是偶函数,故A 错误; 1()12=-+x x e f x e 的定义域为R , 111()()11121211xxx x x x x x e e e e f x f x e e e e---+=-+-=+-++++11011x x xe e e=+-=++,()f x ∴为奇函数,故B 正确; 111111()121221x x x xxe ef x e e e +-=-=-=-+++, 又x e 在R 上单调递增,11()21xf x e ∴=-+在R 上是增函数,故C 正确;春雨教育0x e > ,11x e ∴+>,则1011x e <<+,可得11112212x e -<-<+,即11()22f x -<<. ()[()]{1g x f x ∴=∈-,0},故D 错误.故选BC.三、填空题.请把答案直接填写在答题卡相应位置上......... 13.已知定义在R 上的奇函数,当0x <时有3()2x f x x =-+,则()f x =____332,00,02,0x x x x x x x -⎧+>⎪=⎨⎪-+<⎩_____14.若关于x 的函数12(log )x y a =是R 上的减函数,则实数a 的取值范围是1(,1)2. 15.设函数2()log )f x x =,若对任意的(1,)x ∈-+∞,不等式(ln )(24)0f x a f x -++<恒成立,则a 的取值范围是___(0,]e ____.16.设函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩. ①若1a =,则()f x 的最小值为____1-___;②若()f x 恰有2个零点,则实数a 的取值范围是___[)1,12,2⎡⎫+∞⎪⎢⎣⎭____.四、解答题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17. 设函数()()⎪⎭⎫ ⎝⎛⋅=4log 8log 22x x x f ,144x ≤≤,(1)求⎪⎭⎫⎝⎛41f 的值(2)若2log t x =,求t 取值范围;(3)求()f x 的最值,并给出最值时对应的x 的值。
高一数学周末练习 2015-5-241.不等式2x x <的解集是2. 从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个 的两倍的概率为 .3. 阅读右边的程序框图,运行相应的程序,则输出的值为 .4.在各项均为正数的等比数列{}n b 中,若783b b ⋅=, 则3132log log b b ++……314log b += .5. 数列{}n a 的前n 项和*23()n n S a n N =-∈,则=n a .6. 一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 . 7.ABC ∆中,若a ,b ,c 成等差数列,30B =,ABC ∆的面积为23, 那么b =________.8.数列{}n a 满足12a =,112n n na a --=,则n a = . 9.已知31x y +=,则28x y +的最小值为____________.10.若ABC ∆的三个内角,,A B C 成等差数列,1AB =,4BC =,则边BC 上的中线AD 的长为 .11. 设y x ,为实数,若1422=++xy y x ,,则y x +2的最大值是 . 12.在ABC ∆中边,,a b c 成等比数列,则B 的取值范围是 . 13.若关于的不等式对任意的正实数恒成立,则实数的取值范围是 .14.ABC ∆中,D 在边BC 上,且2BD =,1DC =,60B ∠=,150ADC ∠=,则ABC ∆的面积为 .15. 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角A 的大小;(2)若,求边c 的大小.i x 2(20)lg 0aax x-≤x a 1cos 2a C cb +=a =4b =16.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:2920(0)31600vy v v v =>++. (1)在该时段内,当汽车的平均速度v 为多少时,车流量有何最大值?(保留分数形式) (2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?17.将n 2个数排成n 行n 列的一个数阵:111213121222323132333123n n n n n n nna a a a a a a a a a a a a a aa 已知a 11=2,a 13=a 61+1.该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,其中m 为正实数. (Ⅰ)求第i 行第j 列的数a ij ;(Ⅱ)求这n 2个数的和.参考答案:1、{|1x x >或0}x <.2、31. 3、4. 4、7. 5、123-⋅=n n a . 6、12. 7、1、51()22n -. 9、、. 12、(0,]3π. 14、解:在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o=3.在△ACD 中,AC 2=(3)2+12-2×3×1×cos150o =7,∴AC =7.∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343. 15(2)用余弦定理,得16、解:(Ⅰ)依题意,,83920160023920)1600(3920=+≤++=vv y 当且仅当1600v v =,即40v =时,max 92083y =(千辆/小时)(Ⅱ)由条件得,10160039202>++v v v整理得v 2-89v +1600<0, 即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/小时,车流量最大,最大车流量约为11.1千辆/小时.如果要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应大于25千米/小时且小于64千米/小时.2222cos .a b c bc A =+-17、解:(Ⅰ)由a 11=2,a 13=a 61+1,得2m 2=2+5m +1.………2分解得m =3或m =12-(舍去). ………………………………………4分11113[2(1)]3(31)3j j j ij i a a i m i ---=⋅=+-=-.…………………………7分(Ⅱ)S =111212122212()()()n n n n nn a a a a a a a a a ++++++++++=11121(13)(13)(13)131313n n n n a a a ---+++---………………………………10分=1(231)1(31)(31)(31)224n n n n n n +--⋅=+-.…………………………15分。
高一年级下学期数学周测试卷一、选择题(本题12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求)。
1、= 210sin A 23 ;B 23- ;C 21 ;D 21- 2、函数|sin |x y =的一个单调增区间是A 、)4,4(ππ-B 、)43,4(ππ C 、)23,(ππ D 、)2,23(ππ 3、不等式0412>--x x 的解集是 A 、(-2,1) B 、(2,+∞) C ),2()1,2(+∞- D ),1()2,(+∞--∞4、设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N M A .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{-5、函数x xx f -=1)(的图像关于 A . y 轴对称 B.直线y=-x C.坐标原点对称 D.直线y=x6、若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为( )A .1 B. 2 C. 3 D.27、已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为( )A . 31 B. 32 C. 33 D. 32 8、要得到函数y =sin(4x -π3)的图像,只需将函数y =sin4x 的图像( ) A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位 D .向右平移π3个单位 9.a 、b 为非零向量,且|a +b |=|a |+|b |,则( )A .a ∥b ,且a 与b 方向相同B .a 、b 是方向相反的向量C .a =-bD .a 、b 无论什么关系均可10.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是( )A .7,11,19B .6,12,18C .6,13,17D .7,12,1711.把函数f (x )=sin 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g (x )的图象,则g (x )的最小正周期为( )A .2πB .Π C.π2D.π412.sin 120°cos 210°的值为( )A .-34 B.34 C .-32D.14 二、填空题(每小题5分,共20分)13.在△ABC 中,=a ,=b ,=c ,则a +b +c =________. 14、1-tan 15°1+tan 15°= 15、设f(x)是周期为2的奇函数,当0≤x ≤1时,f(x)=2x(1-x),则⎪⎭⎫ ⎝⎛-25f = 16、已知⎪⎭⎫ ⎝⎛∈ππα,2,55sin =α,则tan2α=_______________。
高一数学周考试题 参考答案一.选择题: 1-5:ABDAC6——10:BBADA 10.解:()f x =====令1sin 2cos x m x +=-,则1sin 2cos x m m x +=-,sin cos 21x m x m +=-)2n(1x m ϕ=+-得)sin(x ϕ=+1≤解得403m ≤≤,()f x =单增,值域为⎡⎢⎣11 .; 12. 1344a b +; 13. 20; 14. 1; 15.⎫⎪⎭. 15.解: 222221122(2),2,0()21211(1),,0x x x x x x x f x x x x x x x x -≤-----≤⎧⎧==⎨⎨->-----+>⎩⎩,绘出简图 若方程()f x m =有三个根,则104m <<,且当0x >时方程可化为20x x m -+-=,易知,231x x +=,23x x m =;当0x ≤时方程可化为220x x m --=,可解得1x = 记y=2222212312323()212x x x x x x x x m ++=++-=-3928m =-+令t =,则2312116816y t t =--+,求得y ⎫∈⎪⎭三.解答题.( 本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.)16. 解:(Ⅰ)令tan x α=,则132x x -=-,22320x x +-=,解得12x =或2x =-, 2παπ<<,tan 0α<,故tan 2α=-; (Ⅱ)3cos()cos()sin cos 2tan 1211cos sin()2παπααααπαα+--+==+=-+=-- 17. 解:(Ⅰ) 571510714,,(,3)885888d a b λλλλλλλλ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭2||d λ=+=1±,(1,3)d =或(1,3)d =--(Ⅱ) (34,2),2(5,2)a kc k k b a +=++-=-,由题得(34)(5)(2)02k k ⨯+--⨯+=,解得1613k =- 18.解:(Ⅰ)当1a >时,21max min (),()f x a f x a -==,则2218a a a -==,解得2a =; 当01a <<时,12max min (),()f x a f x a -==,则1328a a a --==,解得12a =; (Ⅱ) 当1a >时,由前知2a =,不等式2log (22)log (1)a a a x x +<+即为222log (42)log (1)x x +<+224202421230x x x x x x +>>-⎧⎧⇔⇔⎨⎨+<+-->⎩⎩213x x >-⎧⇔⎨<->⎩或得解集为(2,1)(3,)--+∞.19. 解:(Ⅰ)当2ω=时,2()4sin(2)3g x x π=+2()4sin(2)4sin(2)6333g x x x ππππ-=-+=+ ()4sin(2)3p x x π=+,令23x k ππ+=,得62k x ππ=-+,中心为,0()62k k Z ππ⎛⎫-+∈ ⎪⎝⎭; (Ⅱ)2()4sin()(cos )3f x x x πωω=+-14sin ()cos cos 2x x x ωωω⎡=-⋅-+⎢⎣22sin cos x x x ωωω=-sin 2cos2)x x ωω=-+2sin(2)3x πω=--由题意,Tπ=,2,12ππωω∴== 令23t x π=-是x的增函数,则需2sin y t =-是t 的增函数 故222232k x k πππππ-≤-≤+,522266k x k ππππ-≤≤+,51212k x k ππππ-≤≤+ 函数()f x 的单增区间是5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 20.解:(Ⅰ) 若()f x 是偶函数,则有()()f x f x -=恒成立,即:22log (41)log (41)x x mx mx -+-=++ 于是2222412log (41)log (41)log ()log (41)24x x xx x mx x -+=+-+=-+=- 即是22mx x =-对x R ∈恒成立,故1m =- (Ⅱ)当0m >时,2log (41)x y =+,在R 上单增,y mx =在R 上也单增所以2()log (41)x f x mx =++在R 上单增,且(0)1f = 则()242418(log )2log 41f x x m ++-=可化为()242418(log )2log 4(0)f x f x m ++-= 又()f x 单增,得242418(log )2log 40x x m ++-=,换底得2222log 48()2log 40log 4x x m -+-=即22242(log )2log 40x x m -+-=,令2log t x =,则3[0,]2t ∈,问题转换化为 242240t t m -+-=在3[0,]2t ∈有两解24224t t m⇔=-++ 令2224y t t =-++,29312()(0)222y t t =--+≤≤,max 19()22y y ==, 作出29312()(0)222y t t =--+≤≤与4y m =的简图知,4942m ≤<解得819m <≤ 又0m >,故819m <≤. 21.解:(Ⅰ)由[][]()()(2)(1)(1)1(1)(1)1f x f y f xy x y f x y y f y x +=--+=-+-+=--+ 令1,1m x n y =-=-,则,0m n >,且有(1)(1)(1)f m f n f mn +++=+对任意,0m n >均成立 令1m n ==即有(2)(2)(2)f f f +=,得(2)0f =;(Ⅱ)由(1)(1)(1)f m f n f mn +++=+有(1)(1)(1)f mn f n f m +-+=+,只需1m >就好 设211,1x mn x n =+=+,其中,0,1n m m >>,则21(1)0x x n m -=->,故21x x >则21()()(1)(1)(1)f x f x f mn f n f m -=+-+=+,1,12m m >+>所以(1)0f m +>, 即21()()0f x f x ->,21()()f x f x >,()f x 在(1,)+∞单调递增(Ⅲ)由(1)(1)(1)f m f n f mn +++=+令3m n ==,有(4)(4)(10)f f f +=,(10)2f = 令19,9m n ==,由1(91)(1)(911)099f f f ⋅+++==+,故10()29f =-,由奇偶性10()29f -=- 则()2f x <的解集是 10(,)(1,10)9-∞-于是问题等价于是否存在实数k 使10sin 2(4)(sin cos )9k k θθθ--++<-或1sin 2(4)(sin cos )10k k θθθ<--++<对任意的[0,]θπ∈恒成立令sin cos ,[t t θθ=+∈-,问题等价于210(4)19t k t k --+-<-或21(4)110t k t k <--+-<对[t ∈-恒成立令2()(4)1g t t k t k =--+-,则10()9g t <-对[t ∈-恒成立的必要条件是10(1)9109g g ⎧-<-⎪⎪⎨⎪<-⎪⎩即123091109k k ⎧-+<⎪⎪⎨⎪+++<⎪⎩得1391989k k ⎧<⎪⎪⎨⎪>+++⎪⎩,此时无解; 同理1()10g t <<恒成立的必要条件是1(1)10110g g <-<⎧⎪⎨<<⎪⎩,即124101(1110k k <-<⎧⎪⎨<-++<⎪⎩解得57218k k ⎧<<⎪⎨⎪--<<+⎩,得572k <<; 当572k <<时,2()(4)1g t t k t k =--+-的对称轴042k t -=33,42⎛⎫∈- ⎪⎝⎭, (1)当47k +≤<时,对称轴04322k t -⎫=∈⎪⎭,在区间[-的右侧 2()(4)1g t t k t k =--+-在[-单调递减,1()10g t <<恒成立1(1)10110g g <-<⎧⎪⇔⎨<<⎪⎩成立故47k +≤<时,1()10g t <<恒成立;(2)当542k <<+042k t -=34⎛∈- ⎝ ,2()(4)1g t t k t k =--+-在[-先减后增 1()10g t <<恒成立还需min 4()12k g t g -⎛⎫=> ⎪⎝⎭,即2(4)4(4)1142k k k k ----+-> 化简为212240k k -+<,2(6)12k -<,即6k -<-<,解得66k -<<+故有66542k k ⎧-<<+⎪⎨<<+⎪⎩解得64k -<<+;综上所述存在()67k ∈-,使()sin 2(4)(sin cos )2f k k θθθ--++<对任意的[0,]θπ∈恒成立.。
高一数学周练(15)一、选择题:(本题共12小题,每小题5分,共60分)1.tan390°的值等于()A.B.C.﹣D.﹣2.已知M={0,1,2},N={x|x=2a,a∈M},则M∪N=()A.{0}B.{0,1}C.{0,1,2}D.{0,1,2,4}3.设P是△ABC所在平面内的一点,,则()A.P、A、C三点共线B.P、A、B三点共线C.P、B、C三点共线D.以上均不正确4.给出下列四个式子:①=x;②a3>a2;③(log a3)2=2log a3;④log23>log49.其中正确的有()A.0 个B.1个C.2个D.3个5.如图,已知∠AOB=2弧度,点A1、A2、A3在OA上,点B1、B2、B3在OB上,其中每一条实线段和虚线段长度均为1个单位.一个动点M从点O出发,沿着实线段和以点O为圆心的实线圆弧匀速运动,速度为1单位/秒.则动点M到达A2处所需时间为()秒.A.6B.8C.2+πD.2+3π6.下列四个函数中,在(0,+∞)上为增函数的是()A.y=﹣1B.y=x2﹣3x C.y=﹣D.y=﹣|x|7.设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,3)内近似解的过程中取区间中点x0=2,那么下一个有根区间为()A.(1,2)B.(2,3)C.(1,2)或(2,3)D.不能确定8.已知函数f (x )=,若f (f (﹣1)=18,那么实数a 的值是( )A .0B .1C .2D .39.若,则sin2α的值为( )A .B .C .D .10.如图2-3-6所示,△ABC 中,若D ,E ,F 依次是AB 的四等分点,则以CB →=e 1,CA →=e 2为基底时,CF →=________.A. 34e 1+14e 2 B.C. D.11.已知函数f (x )=Asin (wx +φ)(A >0,w >0,|φ|<,x ∈R )在一个周期内的图象如图所示.则y=f (x )的图象可由函数y=cosx 的图象(纵坐标不变)( )A .先把各点的横坐标缩短到原来的倍,再向左平移个单位B .先把各点的横坐标缩短到原来的倍,再向右平移个单位C .先把各点的横坐标伸长到原来的2倍,再向左平移个单位D .先把各点的横坐标伸长到原来的2倍,再向右平移个单位12.设函数f (x )为偶函数,且当x ≥0时,f (x )=()x ,又函数g (x )=|xsinπx |,则函数h (x )=f (x )﹣g (x )在[﹣,2]上的零点的个数为( )个. A .3B .4C .5D .6二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知集合M={x |log 2(x ﹣3)≤0},N={x |y=},则集合M ∩N 为 .14.(5分)函数的单调增区间为 .15.(5分)甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2).甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半时间使用速度v 2.请在如图坐标系中画出关于甲、乙二人从A 地到达B 地的路程与时间的函数图象(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点,t 1是t 2的一半).16.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值是 . 三.解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(1)已知||=1,||=,若与的夹角为,求|﹣|.(2)已知=(﹣4,3),=(1,2),求(﹣3)•(2+)的值.18.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (﹣3,4).(1)求sinα,cosα的值;(2)的值.19.已知函数)32sin(23π+-=x y .(1)求函数的值域; (2)求函数取最小值时x 的集合; (3)当⎥⎦⎤⎢⎣⎡-∈3,3ππx 时,求函数的最大值.20.设函数f (x )=log a x ,x (0<a <1). (1)比较f (sin1)与f (cosl )的大小;(2)记函数f (x )的反函数为g (x ),若a +kg (x ﹣1)≥0在x ∈[2,+∞)上恒成立,求k 的最小值.21.已知函数2()log (21)x f x =+(1)求证:函数()f x 在(,)-∞+∞内单调递增;(2)若关于x 的方程2log (21)()x m f x -=+在[1,2]上有解,求m 的取值范围。
高一数学“每周一练”系列试题及答案
1.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙
齿健康检查。
现将800名学生从1到800进行编号,求得间隔数k
800
50
=16
,即每16
人抽取一个人。
在1~16中随机抽取一个数,如果抽到的是7,则从33 ~ 48这16个数中应取的数是()
A.40.B.39.C.38.D.37.
2.某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
生产能
力分组
[100,110)[110,120)[120,130)[130,140)[140,150) 人数48x 5 3 生产能
力分组
[110,120)[120,130)[130,140)[140,150) 人数6y 3618
(i)先确定x,y,再完成下列频率分布直方图,就生产能力而言,A类工人中个体间的差
异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)。
高一春季数学周测答案一.选择题1.下列命题中正确的是( )A .终边和始边都相同的角一定相等B .始边相同而终边不同的角一定不相等C .小于90︒的角一定是锐角D .大于或等于0︒且小于90︒的角一定是锐角 【答案】B2.下图终边在阴影部分的角的集合可表示为( )A .{}18018030,k k k Z αα⋅<<⋅+∈B .{}18018030,k k k Z αα⋅≤≤⋅+∈C .{}36036030,k k k Z αα⋅<<⋅+∈D .{}36036030,k k k Z αα⋅≤≤⋅+∈【答案】B3.一个半径是R 的扇形,其周长为3R ,则该扇形圆心角的弧度数为( )A .1B .3C .πD .3π 【答案】A4.下列两组角的终边不相同的是()k ∈Z ( )A .512k ππ+与712k ππ−+ B .223k ππ−+与423k ππ+ C .126k ππ+与1326k ππ+D .14k ππ+与124k ππ±+【答案】D5.当α为第二象限角时,sin cos sin cos αααα−的值是( ). A .1B .0C .2D .2−【答案】C6.角α的终边上有一点P (a,a ),a ∈R ,且a ≠0,则sinα的值是( ) A .√22B .−√22C .±√22D .1【答案】C 7.已知sinα−2cosθ3sinα+5cosα=−5,则tanα的值为( )A .−2B .2C .2316 D .−2316 【答案】D8. 已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨−>⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72 B .8 C .92D .12 【答案】D【分析】先画出分段函数图像,确定1x ,2x ,3x ,4x 的范围,由()()3334log 1log 1x x −−=−结合对数运算可得()()34111x x −−=,)12x x 与34122x x +分别利用均值不等式求最小值,确认取等条件相同,即可得最小值.【详解】函数图像如图所示,()17f =,(]0,7t ∈,1234212x x x x <−<≤<<<,124x x +=−,由()()()()()()333433434log 1log 1log 110111x x x x x x −−=−⇒−−=⇒−−=, ∴()()34342112122251x x x x =−+++−5922≥=,当且仅当343,32x x ==时,等号成立,此时1t =;)()2212121212422x x x x x x x x ⎛⎫+⎛⎫=−≥−=−=− ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1222x x =−=−+1t =.所以)1234122x x x x ++的最小值为91422−=.9.终边在直线y =的角的集合为( )A .{}0=60+360,k k Z αα−∈B .{}0=60+180,k k Z αα−∈C .{}=120+360,k k Z αα∈D .{}=120+180,k k Z αα∈【答案】BD10.化简√1−sin 2160°的结果是( ) A .cos160° B .|cos160°| C .±cos160° D .cos20°【答案】BD11.下列各式中,值为1的是( ) A .122sin45−︒B .4222sin sin cos cos αααα++C .9tan π4D .lg2lg5⨯【答案】ABC12.已知π1sin 33x ⎛⎫−= ⎪⎝⎭,且π02x <<,则以下结论正确的有( )A.π1sin 63x ⎛⎫+= ⎪⎝⎭B.πsin 6x ⎛⎫+ ⎪⎝⎭C.2π1cos 33x ⎛⎫+=− ⎪⎝⎭D.2πcos 3x ⎛⎫+= ⎪⎝⎭【答案】BD 二.填空题13.25cos 4π⎛⎫−= ⎪⎝⎭__________.【答案】√2214.已知:p “角α的终边在第一象限”,:q “sin 0α>”,则p 是q 的________ 条件(填“充分非必要”、“必要非充分”、“充要”或“既不充分也不必要”) 【答案】充分非必要”15.设()cos 24n f n ππ⎛⎫=+ ⎪⎝⎭,则(1)(2)(3)(2022)f f f f ++++=__________.【答案】-√216.已知()()222log 2log 24f x x t x t =−++,在1,164x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为()g t ,当关于t 的方程有()10g t t a −−+=有两个不等实根时,a 的取值范围是__________. 【答案】()5,−+∞【分析】换元[]2log 2,4s t =∈−,求出二次函数2224y s ts t =−++在[]2,4s ∈−上的最小值()g t 的表达式,然后作出函数y a =−与函数()1y g t t =−−的图象,利用数形结合思想可求出实数a 的取值范围.【详解】当1,164x ⎡⎤∈⎢⎥⎣⎦时,令[]2log 2,4s x =∈−,则()g t 为二次函数2224y s ts t =−++在[]2,4s ∈−上的最小值,该二次函数图象开口向上,对称轴为直线s t =.①当2t ≤−时,函数2224y s ts t =−++在区间[]2,4−上单调递增, 此时,()()()22222468g t t t t =−−⨯−++=+;②当24t −<<时,二次函数2224y s ts t =−++在s t =处取得最小值,即()224g t t t =−++;③当4t ≥时,二次函数2224y s ts t =−++在区间[]2,4−上单调递减,此时,()242424620g t t t t =−⨯++=−+.综上所述,()268,224,24620,4t t g t t t t t t +≤−⎧⎪=−++−<<⎨⎪−+≥⎩.由()10g t t a −−+=得()1a g t t −=−−,则函数y a =−与函数()1y g t t =−−的图象有两个交点,令()()2277,233,2115,14721,4t t t t t h t g t t t t t t t +≤−⎧⎪−++−<<⎪=−−=⎨−++≤<⎪⎪−+≥⎩,作出函数y a =−与函数()y h t =的图象如下图所示:如图所示,当5a −<时,即当5a >−时,函数y a =−与函数()y h t =的图象有两个交点,此时,关于t 的方程有()10g t t a −−+=有两个不等实根. 因此,实数a 的取值范围是()5,−+∞. 故答案为:()5,−+∞. 三.解答题 17. 【答案】 (1)3sin 5α=−(2)5418. 【答案】(1)17;(2)15−. 19. 【答案】(1)−√39;(2)√22.20.【答案】(1)函数()()233log a f x a a x =−+是对数函数,233101a a a a ⎧−+=⎪∴>⎨⎪≠⎩,解得2a =,()2log f x x ∴=,211log 122f ⎛⎫∴==− ⎪⎝⎭(2)()2log f x x =在定义域()0,∞+上单调递增,()121f f m m ⎛⎫∴>− ⎪⎝⎭可得到21010121m mm m⎧⎪−>⎪⎪>⎨⎪⎪>−⎪⎩,解得112m <<,∴不等式()121f f m m ⎛⎫>−⎪⎝⎭解集为1,12⎛⎫ ⎪⎝⎭.21. 【答案】(1)(,4][2,)−∞−+∞;(2)存在,91,4⎛−+− ⎝⎦. 【解析】(1)利用绝对值三角不等式求得()f x 的最小值,进而根据不等式恒成立的意义得到关于a 的含绝对值的不等式,求解即得;(2)根据a 和x 的范围化简得到含有参数a 的关于x 的一元二次不等式,利用二次函数的图象和性质,并根据不等式恒成立的意义得到关于实数a 的有关不等式(组),求解即得.【详解】解:(1)∵()|31||3|f x x x a =−++,的∴()|(31)(3)||1|f x x x a a ≥−−+=+, 当且仅当(31)(3)0x x a −+≤时,取等号. ∴原不等式等价于13a +≥, 解得2a ≥或4a ≤−.故a 的取值范围是(,4][2,)−∞−+∞. (2)∵1a >−,∴133a −<, ∵1,33a x ⎡⎤∈−⎢⎥⎣⎦,∴()|31||3|1f x x x a a =−++=+,()(1) g x a x =+,∴原不等式恒成立22(1)53(6)30a x x x x a x ⇔+≥−−⇔−+−≤在1,33a x ⎡⎤∈−⎢⎥⎣⎦上恒成立,令2()(6)3u x x a x =−+−,2423039a u a a ⎛⎫−=+−≤ ⎪⎝⎭得a ≤≤且14410393u a ⎛⎫=−−≤ ⎪⎝⎭,得443a ≥−,又1a >−,得914a −+−<≤.故实数a 的取值范围是91,4⎛−+− ⎝⎦.22.【答案】(1)略;(2)17,18⎡⎤−−⎢⎥⎣⎦;(3)1⎡⎣. 【分析】(1)根据“伪奇函数”的概念,可以求出1x =±满足()()f x f x −=−,得到()f x 是“伪奇函数”;(2)由幂函数的概念求出n 的值,把结论转化为对勾函数在1,44⎡⎤⎢⎥⎣⎦的值域问题,进而解不等式得答案;(3)由题意把结论化为关于22x x −+的二次方程有解的问题,通过换元引入二次函数,进而转化二次函数为在给定的区间有零点问题,列不等式解得答案.【详解】(1)若函数2()21f x x x =−−为“伪奇函数”,则方程()()f x f x −=−有实数解, 即222121x x x x +−=−++有解,整理得21x =解得1x =±,所以()f x 为“伪奇函数”; (2)因为3()(1)(R)n g x n x n −=−∈为幂函数,所以11n −=即2n =,所以()g x x =, 则由()2x f x m =+为定义在[2,2]−上的“伪奇函数”, 所以22x x m m −+=−−在[2,2]−有解,整理得122222x x x xm −−=+=+, 令2x t =,则144t ≤≤,对于函数()1h t t t=+, 设12144t t ≤<≤,则()()()212121211t t h t h t t t t t −−=−⋅ 当121,,14t t ⎡⎤∈⎢⎥⎣⎦时,有()()21h t h t <,所以()h t 是减函数,当[]12,1,4t t ∈时,有()()21h t h t >,所以()h t 是增函数, 又()111744444h h ⎛⎫==+= ⎪⎝⎭,()12h =,所以()1724h t ≤≤,所以17224m ≤−≤解得1718m −≤≤−,所以实数m 的取值范围是17,18⎡⎤−−⎢⎥⎣⎦;(3)若12()422x x f x m m +=−⋅+−是定义在R 上的“伪奇函数”,则()()f x f x −=−在R 上有实数解,即2242224222x x x x m m m m −−−⋅+−=−+⋅−+,整理得()244222240x x x x m m −−+−++−=,()()2222222260x x x x m m −−+−++−=,令122222x x x x s −=+=+≥=,当且仅当0x =取到等号, 则222260s ms m −+−=在[)2,+∞上有解,令()()22222266h s s ms m s m m =−+−=−+−在[)2,+∞上有零点,所以()222Δ44260m m m ≥⎧⎪⎨=−⨯−≥⎪⎩,即2m m ≥⎧⎪⎨≤≤⎪⎩2m ≤或者()()222222420Δ44260m h m m m m ⎧<⎪⎪=−−≤⎨⎪=−⨯−≥⎪⎩,即211m m m <⎧⎪≤≤+⎨⎪≤≤⎩12m <,综上可得m的取值范围是1⎡⎣。
高一数学周考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-6x+8的零点个数是()。
A. 0B. 1C. 2D. 32. 已知函数f(x)=2^x,g(x)=x+1,则f[g(x)]等于()。
A. 2^(x+1)B. 2^x + 1C. x^2 + 2x + 2D. 2^x + 2^(x+1)3. 若a,b∈R,且a>b,则下列不等式中一定成立的是()。
A. a^2 > b^2C. 1/a < 1/bD. a/b > 14. 已知向量a=(3, -2),b=(1, 2),则向量a+2b的坐标为()。
A. (5, 2)B. (5, -2)C. (1, -6)D. (1, 2)5. 已知集合A={x|x^2-5x+6=0},则A的元素个数为()。
A. 0B. 1C. 2D. 36. 若函数f(x)=x^3-3x,求f'(x)的值()。
A. 3x^2-3C. x^2-3D. x^2+37. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()。
A. 9B. 10C. 11D. 128. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a=2,b=1,则该双曲线的离心率为()。
A. √3B. √5C. √6D. √79. 已知函数f(x)=|x|,求f(-2)的值为()。
A. 2B. -2C. 0D. 410. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的半径为()。
A. 3B. 4C. 5D. 6二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(1)的值为______。
12. 若向量a=(2, 3),b=(-1, 2),则向量a·b的值为______。
13. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值为______。
14. 已知直线l的方程为y=2x+3,求该直线的斜率为______。
智才艺州攀枝花市创界学校涟水县第一高一数学周周练〔二十〕
班级_____________________成绩____________
一、填空题:
1、以下现象:
①早晨,太阳从升起;
②某交换台在单位时间是内收到用户呼唤的次数;
③检查流水线上一件产品,是合格品还是不合格品
④一个盒子中有十个完全一样的白球,搅匀后从中任意摸取一个是白球。
其中是随机现象的有___________________〔填序号〕;
2、古典概型的两个特点是:①___________________________________________________; ②_________________________________________________________;
3、从甲、乙、丙中任选两名代表,甲被选中的概率为________________________________;
4、从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,那么这个两位数大于40的概率是_______________________________________;
5、在一次口试中,要从10道题中人抽3题进展答复,答对其中2题就能及格,某考生会答复这10题中的8道题,那么该考生及格的概率为_____________________;
6、假设以连续掷两次骰子分别得到点数m ,n 作为点P 的坐标,那么点P 落在圆2216x y +=内的概率
为________________________________;
7、今有一批球票,按票价分类如下:10元票5张,20元票3张,5元票2张,从这10张票中随机抽取两张,票价和为40元的概率是__________________________________。
二、解答题:
8、某篮球运发动在最近几场比赛中罚球投篮的结果如下表:
〔1〕计算表中进球的频率;
〔2〕这为运发动投篮一次,进球的概率约是多少?
9、先后投掷两枚均匀硬币。
〔1〕一一共出现多少种可能的结果?
〔2〕出现“一枚正面,一枚反面〞的结果有多少种?
〔3〕出现“一枚正面,一枚反面〞的概率是多少?
〔4〕有人说一一共出现“两枚正面〞、“两枚反面〞、“一枚正面,一枚反面〞三种情况,因此出现“一枚
正面,一枚反面〞的概率为1
3
,这种说法正确吗?请说明理由。
10、现有一批产品一共10件,其中8件为正品,两件为次品。
〔1〕假设从中取出一件,然后放回,再取出一件,求连续3次取出的都是正品的概率。
〔2〕假设从中一次取3件,求3件都是正品的概率。