高一数学周周练----第一周两角和差的正弦余弦正切公式
- 格式:doc
- 大小:65.50 KB
- 文档页数:1
一、 公式推导借助于两角差的余弦公式cos(βα-)=cos αcos β+sin αsin β,则有:思考途径一:把βα+转化为)(βα--cos(βα+)=cos[)(βα--]=cos αcos(-β)+sin αsin(-β)=cos αcos β-sin αsin β.思考途径二:把任意角β换成-βcos(βα+)=cos αcos(-β)+sin αsin(-β)=cos αcos β-sin αsin β.即:两角和的余弦公式 cos(βα+)=cos αcos β-sin αsin β.注意:1两角和差余弦公式的异同之处.2两角和、差余弦公式间的关系.3公式中的角具有任意性.4 cos(βα+)=cos α + cos β一定成立吗?练习1、利用和角余弦公式求下列各三角函数的值(1) cos75º (2) cos105º练习2、证明公式 cos(2π-α)=sin α 如何利用两角和与差的余弦公式 cos(βα+)=cos αcos β-sin αsin β和 cos(βα-)=cos αcos β+sin αsin β推导出两角和与差的正弦公式?运用公式cos(βα+)=cos αcos β-sin αsin β及诱导公式有:sin()βα+=cos[)(2βαπ+-]=cos[βαπ--)2(] =cos(απ-2)cos β+sin(απ-2)sin β= sin αcos β+cos αsin β即:两角和的正弦公式 sin()βα+= sin αcos β+cos αsin β.在上式中用-β代换β 得:sin()βα-= sin αcos (-β)+cos αsin (-β)即:两角差的正弦公式 sin()βα-= sin αcos β-cos αsin β注意:1公式的推导应启发学生自己完成,老师做归纳总结.2 两公式间的关系、异同.3明确角、函数名和排列顺序以及公式中每一项的符号.4牢记公式,熟练左右互化.练习3、利用和角正弦公式求下列各三角函数的值(1) sin75º (2) sin105º练习4、证明公式 sin(2π-α)=cos α 如何根据两角和与差的正、余弦公式推导出利用两角和与差的正切公式?利用正切函数与正、余弦函数的关系,当cos(βα+)≠0时,将公式sin()βα+= sin αcos β+cos αsin β 与 cos(βα+)=cos αcos β-sin αsin β两边分别相除,有:βαβαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin()tan(-+=++=+若cos αcos β≠0 时,上式即为:两角和的正切公式 βαβαβαtan tan 1tan tan )tan(-+=+ 用-β代换β,则有:两角差的正切公式 βαβαβαtan tan 1tan tan )tan(+-=- 练习5、利用和与差的正切公式求下列各三角函数的值(1) tan75º (2) tan105º注意:1、 和角公式: S )(βα+、 C )(βα+ 、 T )(βα+差角公式: S )(βα-、 C )(βα- 、 T )(βα-2、公式之间的内在联系.3、明确各三角函数的意义.4、公式的逆向变换、多向变换.5、理解公式推导中角的代换的实质.6、和差公式可看成是诱导公式的推广,诱导公式可看成是和差公式的特例 如:ααααπαπαπcos sin 0cos 1sin 2sin cos 2cos )2cos(=⋅-⋅=-=+7、形如asinx+bsinx(a 、b 不同时为0)的变化.三、例题例1、(利用两角和与差的余弦公式解题)(1)求cos20ºcos70º-sin20ºsin70º的值.(2)在ΔABC 中,已知sinA=53, cosB=135 , 求cosC 的值. 例2、(利用两角和与差的正弦公式解题)(1) 求sin72ºcos42º-cos72ºsin42º的值.(2) 已知cos α=53,∈α(0,2π),求sin(6πα-). (3) 求︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值. 例3、(利用两角和与差的正切公式解题)(1) 求︒-︒+15tan 115tan 1的值. (2) 设,20,23,31tan ,55cos πβπαπβα =-=求 βα-的值. 例4、 已知,135)43sin(,53)4cos(,434,40=+=-βπαππαππβ 求 )sin(βα+的值.分析:由于)(2)4()43(βαπαπβπ++=--+,可通过求出βπ+43和απ-4的正、余弦值来求)sin(βα+.。
两角和与差的余弦、正弦、正切(一)1.2.公式:a sin θ+b cos θ=22b a +sin (θ+ϕ(其中cos ϕ=2222sin ,ba b ba a +=+ϕ,θ为任意角).(二)1.熟练掌握两角和与差的正弦、余弦、正切公式的运用2.理解公式:a sin θ+b cos θ=22b a +sin (θ+ϕ) (其中2222sin ,cos ba b ba a +=+=ϕϕ,θ为任意角).3.灵活应用上. (三)1. 2.提高学生的思维素质.利用两角和与差的正、余弦公式将a sin θ+b cos θ形式的三角函数式化为某一个角的三角函数形式.使学生理解并掌握将a sin θ+b cos θ形式的三角函数式化为某一个角的三角函数形式,并能灵活应用其解决一些问题.cos θcos ϕ+sin θsin ϕ=cos (θ-ϕ cos θcos ϕ-sin θsin ϕ=cos (θ+ϕ sin θcos ϕ+cos θsin ϕ=sin (θ+ϕ sin θcos ϕ-cos θsin ϕ=sin (θ-ϕ1.)4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x2.利用和(差))3cos(66)3sin(62)4(cos sin 3)3(cos 53sin 153)2(cos 21sin 23)1(x x x x x x x x -+---+ππ[例1]求证)6sin(2sin 3cos απαα+=+证明:右边=)sin 6coscos 6(sin2)6sin(2απαπαπ+=+)sin 23cos 21(2α+=或:左边=)sin 6cos cos 6(sin 2sin 23cos 21(2sin 3cos απαπαααα+=+=+ )6sin(2απ+=(其中令6cos 23,6sin 21ππ==) [例2]求证)3cos(2sin 3cos απαα-=+分析:要证此式,可从右边按照两角差的余弦公式展开,化简整理可证此式.若 即:左=)sin 3sin cos 3(cos 2)sin 23cos 21(2sin 3cos απαπαααα+=+=+ )3cos(2απ-=(其中令3sin 33,3cos 21ππ==) 师:综合上两例可看出对于左式ααsin 3cos +可化为两种形式)6sin(2απ+或)3cos(2απ-,右边的两种形式均为一个角的三角函数形式.那么,对于a sin α+b cos α的式子是否都可化为一个角的三角函数形式呢?师:推导)cos sin (cos sin 222222ααααba b ba ab a b a ++++=+由于1)()(222222=+++b a b b a asin 2θ+cos 2θ=1(1)若令22ba a +=sin θ,则22ba b +=cos θ∴a sin α+b cos α=22b a +(sin θsin α+cos θcos α)=22b a +cos (θ-α或=22b a +cos (α-θ(2)若令22ba a +=cos ϕ,则22ba b +=sin ϕ∴a sin α+b cos α=22b a +(sin αcos ϕ+cos αsin ϕ)=22b a +sin (α+ϕ) 例如:2sin θ+cos θ=)cos 55sin 552(1222θθ++ 若令cos ϕ=552,则sin ϕ=55∴2sin θ+cos θ=5(sin θcos ϕ+cos θsin ϕ)=5sin (θ+ϕ若令552=sin β,则55=cos β∴2sin θ+cos θ=5(cos θcos β+sin θsin β)=5cos (θ-β)或 =5cos (β-θ)看来,a sin θ+b cos θ均可化为某一个角的三角函数形式,且有两种形式. Ⅳ.师:通过本节的学习,要在熟练掌握两角和与差的余弦、正弦、正切公式的基础上,推导并理解公式:a sin θ+b cos θ=22b a +sin (θ+ϕ(其中cos ϕ=22ba a +,sin ϕ=22ba b +)mcos α+nsin α=22n m +cos (α-β(其中cos β=22nm m +,sin β=22nm n +进而灵活应用上述公式对三角函数式进行变形,解决一些问题.两角和差的正弦、余弦和正切公式(基础训练)1.化简)sin()sin()cos()cos(γββαγββα-----为 ( )A .)2sin(γβα+-B .)sin(γα- .cos()C αγ-D .)2cos(γβα+- 2.已知3tan =α,则αααα22cos 9cos sin 4sin 2-+的值为( )A .3B .2110 C .13 D .1303.已知4sin 25α=-,(,)44ππα∈-,sin 4α的值为 ( )A .2425B .2425-C .45D .7254.函数2sin y x =是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数5.已知sin αcos α=38,且4π<α<2π,则cos α-sin α的值为 ( ) A .12 B .—12 C .14- D .12±6.已知α+ β =3π, 则cos αcos β αcos β αsin β – sin αsin β 的值为 ( )A .2-B .–1C .1D .7、已知1tan 23α=,求tan α的值. 8、已知4sin 5α=,(,)2παπ∈5cos 13β=-,β是第三象限角,求cos()αβ-的值.课时对点练一、选择题(本题共5小题,每小题5分,共25分) 1.函数y =2cos 2⎝⎛⎭⎫x -π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数2.tan 70°+tan 50°-3tan 70°·tan 50°=( )A. 3B.33C .-33D .- 33.若3sin x -3cos x =23sin(x -φ),φ∈(-π,π),则φ=( )A .-π6B.π6C.5π6D .-5π64.(2010·烟台调研)已知sin ⎝⎛⎭⎫π4-x =35,则sin 2x 的值为( )A.725B.1625C.1425D.19255.已知cos ⎝⎛⎭⎫π6-α=33,则sin 2⎝⎛⎭⎫α-π6-cos ⎝⎛⎭⎫5π6+α的值是 ( )A.2+33B .-2+33C.2-33D.-2+33二、填空题(本题共3小题,每小题5分,共15分) 6.函数y =2cos 2x +sin 2x 的最小值是________. 7.(2010·汕头二模)若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________.8.已知α、β为锐角,且cos α=17,cos(α+β)=-1114,则β的值为________.三、解答题(本题共2小题,每小题10分,共20分) 9.已知tan ⎝⎛⎭⎫π4+α=12.(1)求tan α的值; (2)求sin 2α-cos 2α1+cos 2α的值.10.(2010·湖南卷)已知函数f (x )=sin 2x -2sin 2x . (1)求函数f (x )的最小正周期;(2)求函数f (x )的最大值及f (x )取最大值时x 的集合.素能提升练一、选择题(本题共2小题,每小题5分,共10分) 1.(2009·海南卷)有四个关于三角函说法正确的是( ) A :x ∈R ,sin 2x 2+cos 2x 2=12; B x 、y ∈R ,sin(x -y )=sin x -sin y ;C.:x ∈[0,π],1-cos 2x 2=sin x ; D :sin x =cos y ⇒x +y =π2.二、填空题(本题共2小题,每小题5分,共10分) 3.3-sin 70°2-cos 210°=________. 4.若cos(α+β)=15,cos(α-β)=35,则tan α·tan β=________.三、解答题(本题共2小题,每小题10分,共20分) 5.如图在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐 角α、β,它们的终边分别与单位圆相交于A 、B 两点.已 知A 、B 两点的横坐标分别为210、255.(1)求tan(α+β)的值;(2)求α+2β的大小.6.(2010·珠海质量检测)已知函数f (x )=4cos 4x -2cos 2x -1cos 2x .(1)求f ⎝⎛⎭⎫-1112π的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求g (x )=f (x )+sin 2x 的最大值和最小值.。
§4.3 两角和与差的正弦、余弦、正切1. 两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β1+tan αtan β (T α-β)tan(α+β)=tan α+tan β1-tan αtan β (T α+β)2. 二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.4. 函数f (x )=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)(其中tan φ=ba)或f (α)=a 2+b 2cos(α-φ)(其中tan φ=ab).1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的. ( √ ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定. ( × )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × ) (5)存在实数α,使tan 2α=2tan α.( √ ) (6)当α+β=π4时,(1+tan α)(1+tan β)=2.( √ ) 2. (2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( )A.43B.34C .-34D .-43答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.3. (2012·江西)若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34B.34C .-43D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34. 4. (2012·江苏)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案17250解析 ∵α为锐角且cos ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+π6=35. ∴sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =sin 2⎝⎛⎭⎫α+π6cos π4-cos 2⎝⎛⎭⎫α+π6sin π4=2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6-22⎣⎡⎦⎤2cos 2⎝⎛⎭⎫α+π6-1 =2×35×45-22⎣⎡⎦⎤2×⎝⎛⎭⎫452-1 =12225-7250=17250. 5. (2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.题型一 三角函数式的化简与给角求值例1 (1)化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ(0<θ<π).(2)求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).思维启迪 (1)分母为根式,可以利用二倍角公式去根号,然后寻求分子分母的共同点进行约分;(2)切化弦、通分.解 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0.因此2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ)(sin θ2-cos θ2)=(2sin θ2cos θ2+2cos 2θ2)(sin θ2-cos θ2)=2cos θ2(sin 2θ2-cos 2θ2)=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)原式=2cos 210°2×2sin 10°cos 10°-sin 10°(cos 5°sin 5°-sin 5°cos 5°)=cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2(12cos 10°-32sin 10°)2sin 10°=3sin 10°2sin 10°=32.思维升华 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有: ①化为特殊角的三角函数值; ②化为正、负相消的项,消去求值; ③化分子、分母出现公约数进行约分求值.(1)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C2+3tan A 2tan C2的值为________.(2)2cos 10°-sin 20°sin 70°的值是( )A.12B.32C. 3D. 2答案 (1)3 (2)C解析 (1)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C 2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. (2)原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.题型二 三角函数的给值求值、给值求角例2 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.思维启迪 (1)拆分角:α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β,利用平方关系分别求各角的正弦、余弦. (2)2α-β=α+(α-β);α=(α-β)+β. 解 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝⎛⎭⎫α2-β= 1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cosα+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729. (2)∵tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4. 思维升华 (1)解题中注意变角,如本题中α+β2=(α-β2)-(α2-β);(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好.(1)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33B .-33C.539D .-69(2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π6答案 (1)C (2)C解析 (1)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2),∵0<α<π2,则π4<π4+α<3π4,∴sin(π4+α)=223. 又-π2<β<0,则π4<π4-β2<π2,则sin(π4-β2)=63.故cos(α+β2)=cos[π4+α-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2)=13×33+223×63=539,故选C. (2)∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×(-1010)=22. ∴β=π4.题型三 三角变换的简单应用例3 已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.思维启迪 (1)可将f (x )化成y =A sin(ωx +φ)的形式;(2)据已知条件确定β,再代入f (x )求值. (1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2,∴[f (β)]2-2=4sin 2π4-2=0.思维升华 三角变换和三角函数性质相结合是高考的一个热点,解题时要注意观察角、式子间的联系,利用整体思想解题.(1)函数f (x )=3sin x +cos(π3+x )的最大值为( )A .2 B. 3 C .1D.12(2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是________.答案 (1)C (2)π解析 (1)f (x )=3sin x +cos π3·cos x -sin π3·sin x=12cos x +32sin x =sin(x +π6). ∴f (x )max =1. (2)f (x )=22sin 2x -22cos 2x -2(1-cos 2x ) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π.高考中的三角变换问题典例:(10分)(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=________.(2)已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( )A.3π4 B.π4或3π4C.π4D .2k π+π4(k ∈Z )思维启迪 (1)注意和差公式的逆用及变形;(2)可求α+β的某一三角函数值,结合α+β的范围求角. 答案 (1)3+22 (2)C解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2.∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故所求=1+121-12=3+2 2.(2)由sin α=55,cos β=31010且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.温馨提醒 三角变换中的求值问题要注意利用式子的特征,灵活应用公式;对于求角问题,一定要结合角的范围求解.方法与技巧 1. 巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.2. 利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba)有a 2+b 2≥|y |.3. 重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1. 运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通. 2. 在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3. 在三角求值时,往往要估计角的范围后再求值.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )A.35B.45C.74D.34答案 D解析 由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.2. 已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )A.1318B.1322C.322D.16答案 C解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以 tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 3. (2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32C. 3D .22-1答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40° =3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.4. 若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为( ) A .-210 B.210 C.3210 D.7210答案 A解析 由tan α+1tan α=103得sin αcos α+cos αsin α=103,∴1sin αcos α=103,∴sin 2α=35.∵α∈(π4,π2),∴2α∈(π2,π),∴cos 2α=-45.∴sin(2α+π4)=sin 2αcos π4+cos 2αsin π4=22×(35-45)=-210.5. 在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C 等于 ( )A.π3 B.2π3 C.π6 D.π4答案 A解析 由已知可得tan A +tan B =3(tan A ·tan B -1),∴tan(A +B )=tan A +tan B1-tan A tan B =-3,又0<A +B <π,∴A +B =23π,∴C =π3.二、填空题 6. 若sin(π2+θ)=35,则cos 2θ=________.答案 -725解析 ∵sin(π2+θ)=cos θ=35,∴cos 2θ=2cos 2θ-1=2×(35)2-1=-725.7. 若α=20°,β=25°,则(1+tan α)(1+tan β)的值为________.答案 2解析 由tan(α+β)=tan α+tan β1-tan αtan β=tan 45°=1可得 tan α+tan β+tan αtan β=1,所以(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β=2.8. 3tan 12°-3(4cos 212°-2)sin 12°=________. 答案 -4 3解析 原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12°=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin (-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24° =-23sin 48°12sin 48°=-4 3. 三、解答题9. 已知tan α=-13,cos β=55,α∈(π2,π),β∈(0,π2),求tan(α+β)的值,并求出α+β的值.解 由cos β=55,β∈(0,π2), 得sin β=255,tan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β =-13+21+23=1. ∵α∈(π2,π),β∈(0,π2),∴π2<α+β<3π2, ∴α+β=5π4. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升(时间:25分钟,满分:43分)1. 已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于 ( )A .-255 B .-3510 C .-31010 D.255答案 A 解析 由tan(α+π4)=tanα+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.2. 定义运算⎪⎪⎪⎪⎪⎪a bc d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于() A.π12 B.π6 C.π4 D.π3答案 D解析 依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437, 于是sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32, 故β=π3,选D. 3. 设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________. 答案 3解析 方法一 因为y =2sin 2x +1sin 2x =2-cos 2x sin 2x, 所以令k =2-cos 2x sin 2x.又x ∈⎝⎛⎭⎫0,π2, 所以k 就是单位圆x 2+y 2=1的左半圆上的动点P (-sin 2x ,cos 2x )与定点Q (0,2)所成直线的斜率.又k min =tan 60°=3,所以函数y =2sin 2x +1sin 2x的最小值为 3. 方法二 y =2sin 2x +1sin 2x =3sin 2x +cos 2x 2sin x cos x=3tan 2x +12tan x =32tan x +12tan x. ∵x ∈(0,π2),∴tan x >0. ∴32tan x +12tan x≥232tan x ·12tan x = 3. (当tan x =33,即x =π6时取等号) 即函数的最小值为 3.4. 已知tan(π+α)=-13,tan(α+β)=sin 2(π2-α)+4cos 2α10cos 2α-sin 2α. (1)求tan(α+β)的值;(2)求tan β的值.解 (1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=sin 2(π2-α)+4cos 2α10cos 2α-sin 2α=sin 2α+4cos 2α10cos 2α-sin 2α=2sin αcos α+4cos 2α10cos 2α-2sin αcos α =2cos α(sin α+2cos α)2cos α(5cos α-sin α) =sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-(-13)=516. (2)tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=516+131-516×13=3143. 5. 已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π =1617,求cos(α+β)的值. 解 (1)由T =2πω=10π得ω=15. (2)由⎩⎨⎧ f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617得⎩⎨⎧2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5α+53π+π6=-65,2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5β-56π+π6=1617, 整理得⎩⎨⎧ sin α=35,cos β=817. ∵α,β∈⎣⎡⎦⎤0,π2, ∴cos α=1-sin 2α=45,sin β=1-cos 2β=1517.∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.。
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式(1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β))②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β))③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β))④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β))⑤tan(α-β)=(T (α-β))tan α-tan β1+tan αtan β⑥tan(α+β)=(T (α+β))tan α+tan β1-tan αtan β(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β).②tan α-tan β=tan(α-β)(1+tan αtan β).2.二倍角公式(1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,③tan 2α=.2tan α1-tan 2α(2)公式变形①cos 2α=,sin 2α=;1+cos 2α21-cos 2α2②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=sin .2)4(πα±3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√)(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√)(3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意tan α+tan β1-tan αtan β角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×)(6)存在角α,使得sin 2α=2sin α成立.(√)(7)若α+β=,则(1+tan α)(1+tan β)=2.(√)π4(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×)(9)存在实数α,使tan 2α=2tan α.(√)(10)y =的x 无意义.(×)1-2cos 2x考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:-sin 10°;1+cos 20°2sin 20°)5tan 5tan 1(00-解:原式=-sin 10°2cos 210°2×2sin 10°cos 10°)5cos 5sin 5sin 5cos (0000-=-sin 10°·=-sin 10°·cos 10°2sin 10°cos 25°-sin 25°sin 5°cos 5°cos 10°2sin 10°cos 10°12sin 10°=-2cos 10°=cos 10°2sin 10°cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°===.cos 10°-2(12cos 10°-32sin 10°)2sin 10°3sin 10°2sin 10°32(2)化简:sin 2α·sin 2β+cos 2α·cos 2β-cos 2α·cos 2β.12解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-·(2cos 2α-1)·(2cos 2β-1)12=sin 2α·sin 2β+cos 2α·cos 2β-·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)12=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12=sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12=sin 2β+cos 2β-=1-=.121212法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-cos 2α·cos12122β=cos 2β-sin 2α·cos 2β-cos 2α·cos 2β12=cos 2β-cos 2β·)2cos 21(sin 2αα+=-cos 2β·1+cos 2β2[sin 2α+12(1-2sin 2α)]=-cos 2β=.1+cos 2β21212法三:(从“幂”入手,利用降幂公式先降次)原式=·+·-cos 2α·cos 2β1-cos 2α21-cos 2β21+cos 2α21+cos 2β212=(1+cos 2α·cos 2β-cos 2α-cos 2β)+(1+cos 2α·cos 2β+cos 2α+cos 2β)-·cos 2α·cos 2β141412=.12[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+tan 10°).3解:sin 50°(1+tan 10°)=sin 50°(1+tan 60°·tan 10°)3=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·====1.cos (60°-10°)cos 60°cos 10°2sin 50°cos 50°cos 10°sin 100°cos 10°cos 10°cos 10°2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan +tan +tan tan 的值为A 2C 23A 2C2________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =,=,tan =,2π3A +C 2π3A +C23所以tan +tan +tan tanA 2C 23A 2C2=tan +tan tan22(C A +2tan 2tan 1(CA -3A 2C 2=+tan tan =.3)2tan 2tan1(CA -3A 2C 23考点二 三角函数式的给值求值命题点1.已知某角的三角函数值求其它的三角函数值2.已知某角的三角函数值,求三角函数的值3.已知三角函数式的值,求三角函数值[例2] (1)(2016·高考全国丙卷)若tan θ=-,则cos 2θ=( )13A .- B .-C. D.45151545解析:法一:cos 2θ=cos 2θ-sin 2θ=cos2θ-sin 2θcos 2θ+sin 2θ==.故选D.1-tan 2θ1+tan 2θ45法二:由tan θ=-,可得sin θ=±,因而cos 2θ=1-2sin 2θ=.1311045答案:D(2)已知tan =,且-<α<0,则等于( ))4(πα+12π2)4cos(2sin sin 22πααα-+A .-B .-C .-D.255351031010255解析:由tan ==,得tan α=-.)4(πα+tan α+11-tan α1213又-<α<0,所以sin α=-.π21010故==2sin α=-.)4cos(2sin sin 22πααα-+2sin α(sin α+cos α)22(sin α+cos α)2255答案:A(3)已知α∈,且2sin 2α-sin α·cos α-3cos 2α=0,则=________.)2,0(π12cos 2sin )4sin(+++ααπα解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0,由于α∈,sin α+cos α≠0,)2,0(π则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=,213∴==.12cos 2sin )4sin(+++ααπα22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)268答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan 的值.)6(θπ+解:tan ===.)6(θπ+tan π6+tan θ1-tan π6tan θ33-131+33×1353-6132.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值.解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ===-.2tan 2θ-tan θ-3tan 2θ+12×(-13)2+13-3(-13)2+11153.已知cos +sin =,则cos =________.)2(απ-)32(απ-23532(πα+解析:由cos +sin =,得)2(απ-)32(απ-235sin α+sin cos α-cos πsin α=∴sin α+cos α=,2π3232353232235即sin =,∴sin =,3)6(πα+2356(πα+25因此cos =1-2sin 2=1-2×=.)32(πα+6(πα+2)52(1725答案:1725考点三 已知三角函数式的值求角命题点1.利用弦函数值求角2.利用切函数值求角[例3] (1)已知cos α=,cos(α-β)=,0<β<α<,则β=________.171314π2解析:∵cos α=,0<α<.∴sin α=.17π2437又cos(α-β)=,且0<β<α<.∴0<α-β<,则sin(α-β)=.1314π2π23314则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×==,由于0<β<,所以β=.1713144373314497×1412π2π3答案:π3(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,则2α-β的值为________.1217解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β==>0,∴0<α<.又∵tan 2α===>0,12-171+12×1713π22tan α1-tan 2α2)31(1312-⨯34∴0<2α<,∴tan(2α-β)===1.π2tan 2α-tan β1+tan 2αtan β34+171-34×17∵tan β=-<0,∴<β<π,-π<2α-β<0,∴2α-β=-π.17π234答案:-π34[方法引航] 1.解决给值求角问题应遵循的原则(1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是,选正、余弦皆可;②)2,0(π若角的范围是(0,π),选余弦较好;③若角的范围是,选正弦较好.)2,2(ππ-2.解给值求角问题的一般步骤(1)求角的某一个三角函数值.(2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=,cos β=-,则α+β的值为( )5531010A. B.C. D.或3π45π47π45π47π4解析:选C.∵α,β为钝角,sin α=,cos β=-,5531010∴cos α=,sin β=,∴cos(α+β)=cos αcos β-sin αsin β=>0.-255101022又α+β∈(π,2π),∴α+β∈,∴α+β=.)2,23(ππ7π42.已知tan α=-,cos β=,α∈,β∈,求tan(α+β)的值,并求出α+β的值.1355),2(ππ)2,0(π解:由cos β=,β∈,得sin β=,tan β=2.55)2,0(π255∴tan(α+β)===1.tan α+tan β1-tan αtan β-13+21+23∵α∈,β∈,∴<α+β<,∴α+β=.),2(ππ)2,0(ππ23π25π4[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-sin 30°=1-=.121434(Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+cos 2α+sin αcos α+sin 2α-sin α·cos α-sin 2α=sin 2α+34321432123434cos 2α=.34法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=+-sin α(cos 30°cos α+sin 1-cos 2α21+cos (60°-2α)230°sin α)=-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin 2α=-cos 2α1212121232121212++cos 2α+sin 2α-sin 2α-(1-cos 2α)=1-cos 2α-+cos 2α=.121434341414141434[高考真题体验]1.(2016·高考全国甲卷)若cos =,则sin 2α=( ))4(απ-35A. B. C .-D .-7251515725解析:选D.因为cos =cos cos α+sin sin α=(sin α+cos α)=,所以sin α+cos α=)4(απ-π4π42235,所以1+sin 2α=,所以sin 2α=-,故选D.32518257252.(2016·高考全国丙卷)若tan α=,则cos 2α+2sin 2α=( )34A.B.C .1D.642548251625解析:选A.法一:由tan α==,cos 2α+sin 2α=1,得Error!或Error!,则sin 2α=2sin αcossin αcos α34α=,则cos 2α+2sin 2α=+=.2425162548256425法二:cos 2α+2sin 2α====.cos 2α+4sin αcos αcos 2α+sin 2α1+4tan α1+tan 2α1+31+91664253.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .- B.C .- D.32321212解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=.124.(2014·高考课标全国卷Ⅰ)设α∈,β∈,且tan α=,则( ))2,0(π)2,0(π1+sin βcos βA .3α-β= B .2α-β=C .3α+β= D .2α+β=π2π2π2π2解析:选B.由条件得=,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin sin αcos α1+sin βcos β,因为-<α-β<,0<-α<,所以α-β=-α,所以2α-β=,故选B.)2(απ-π2π2π2π2π2π25.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α==2sin αcos α-cos 2αsin 2α+cos 2α2tan α-1tan 2α+1==-1.-4-14+1答案:-16.(2016·高考四川卷)cos 2-sin 2=________.π8π8解析:由二倍角公式,得cos 2-sin 2=cos =.π8π8)82(π⨯22答案:22课时规范训练A 组 基础演练1.tan 15°+=( )1tan 15°A .2 B .2+C .4D.3433解析:选C.法一:tan 15°+=+1tan 15°sin 15°cos 15°cos 15°sin 15°===4.1cos 15°sin 15°2sin 30°法二:tan 15°+=+1tan 15°1-cos 30°sin 30°1sin 30°1+cos 30°=+==4.1-cos 30°sin 30°1+cos 30°sin 30°2sin 30°2.的值是( )2cos 10°-sin 20°sin 70°A. B.C.D.123232解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°==.3cos 20°cos 20°33.已知θ∈(0,π),且sin =,则tan 2θ=( ))4(πθ-210A. B. C .-D.4334247247解析:选C.由sin =,得(sin θ-cos θ)=,所以sin θ-cos θ=.)4(πθ-2102221015解方程组Error!,得Error!或Error!.因为θ∈(0,π),所以sin θ>0,所以Error!不合题意,舍去,所以tan θ=,所以tan 2θ==432tan θ1-tan 2θ=-,故选C.2×431-(43)22474.若θ∈,sin 2θ=,则sin θ等于( )]2,4[ππ378A. B. C.D.35457434解析:选D.由sin 2θ=和sin 2θ+cos 2θ=1得387(sin θ+cos θ)2=+1=,3782)473(+又θ∈,∴sin θ+cos θ=.]2,4[ππ3+74同理,sin θ-cos θ=,∴sin θ=.3-74345.已知sin 2(α+γ)=n sin 2β,则的值为( )tan (α+β+γ)tan (α-β+γ)A.B.C.D.n -1n +1nn +1nn -1n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以=tan (α+β+γ)tan (α-β+γ),故选D.n +1n -16.若sin =,则cos 2θ=________.)2(θπ+35解析:∵sin =cos θ=,∴cos 2θ=2cos 2θ-1=2×-1=-.)2(θπ+352)53(725答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈,则tan 2α的值是________.),2(ππ解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈,sin α≠0,∴cos α=-.又∵α∈,∴α=π,),2(ππ12),2(ππ23∴tan 2α=tan π=tan =tan =.43)3(ππ+π33答案:39.化简:(0<θ<π).(1+sin θ+cos θ)(sin θ2-cosθ2)2+2cos θ解:由θ∈(0,π),得0<<,∴cos >0,θ2π2θ2∴==2cos .2+2cos θ4cos 2θ2θ2又(1+sin θ+cos θ)=)2cos 2(sinθθ-2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+=2cos θ2)2cos 2(sin 22θθ-=-2cos cos θ.故原式==-cos θ.θ2-2cos θ2cos θ2cosθ210.已知α∈,且sin +cos =.),2(ππα2α262(1)求cos α的值;(2)若sin(α-β)=-,β∈,求cos β的值.35),2(ππ解:(1)因为sin +cos =,两边同时平方,得sin α=.α2α26212又<α<π,所以cos α=-.π232(2)因为<α<π,<β<π,所以-π<-β<-,故-<α-β<.π2π2π2π2π2又sin(α-β)=-,得cos(α-β)=.3545cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-×+×=-.324512)53(-43+310B 组 能力突破1.已知sin α+cos α=,则1-2sin 2=( )22)4(απ-A. B.C .-D .-12321232解析:选C.由sin α+cos α=,得1+2sin αcos α=,∴sin 2α=-.221212因此1-2sin 2=cos2=sin 2α=-.)4(απ-)4(απ-122.已知f (x )=2tan x -,则f 的值为( )2sin 2x2-1sin x 2cos x 2)12(πA .4B.C .4D .83833解析:选D.∵f (x )=2=2×=,)sin cos cos sin (2sin cos (tan xxx x x x x +⨯=+1cos x ·sin x 4sin 2x∴f ==8.)12(π4sin π63.已知sin α=,sin(α-β)=-,α,β均为锐角,则角β等于( )551010A. B. C. D.5π12π3π4π6解析:选C.∵α、β均为锐角,∴-<α-β<.π2π2又sin(α-β)=-,∴cos(α-β)=.101031010又sin α=,∴cos α=,55255∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=×-×=.5531010255)1010(-22∴β=.π44.若tan α=lg(10a ),tan β=lg ,且α+β=,则实数a 的值为________.1a π4解析:tan α+tan β=lg(10a )+lg =lg 10=1,1a∵α+β=,所以tan =tan(α+β)==,π4π4tan α+tan β1-tan αtan β11-tan αtan β∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg =0.1a 所以10a =1或=1,即a =或1.1a 110答案:或11105.已知tan(π+α)=-,tan(α+β)=.13ααααπ2sin cos 10cos 4)2(2sin 22-+-(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-,∴tan α=-.∵tan(α+β)=1313ααααπ2sin cos 10cos 4)2(2sin 22-+-===sin 2α+4cos 2α10cos 2α-sin 2α2sin αcos α+4cos 2α10cos 2α-2sin αcos α2cos α(sin α+2cos α)2cos α(5cos α-sin α)====.sin α+2cos α5cos α-sin αtan α+25-tan α-13+25-(-13)516(2)tan β=tan[(α+β)-α]===.tan (α+β)-tan α1+tan (α+β)tan α516+131-516×133143。
两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin__αsin_β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α±β,α,β均不为k π+π2,k ∈Z . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin__αcos____α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α,2α均不为k π+π2,k ∈Z . [提醒] 三角函数公式的变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 3.三角函数公式关系判断正误(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意角.( ) (2)两角和与差的正切公式中的角α,β是任意角.( )(3)cos 80°cos 20°-sin 80°sin 20°=cos(80°-20°)=cos 60°=12.( )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtanβ),且对任意角α,β都成立.( ) (5)存在实数α,使tan 2α=2tan α.( )答案:(1)√ (2)× (3)× (4)× (5)√(教材习题改编)已知cos α=-35,α是第三象限角,则cos(π4+α)为( )A.210B .-210C.7210D .-7210解析:选A.因为cos α=-35,α是第三象限的角,所以sin α=-1-cos 2α=-1-(-35)2=-45,所以cos(π4+α)=cos π4cos α-sin π4sin α=22·(-35)-22·(-45)=210.(优质试题·高考江苏卷)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75sin 15°+sin 75°的值是________.解析:sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62.答案:62三角函数公式的直接应用[典例引领](1)(优质试题·高考全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. (2)(优质试题·广州市综合测试(一))已知f (x )=sin ⎝⎛⎭⎫x +π6,若sin α=35⎝⎛⎭⎫π2<α<π,则f ⎝⎛⎭⎫α+π12=________.【解析】 (1)因为α∈⎝⎛⎭⎫0,π2,且tan α=sin αcos α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=255,cos α=55,则cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=55×22+255×22=(2)因为sin α=35⎝⎛⎭⎫π2<α<π,所以cos α=-45,所以f ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=-210. 【答案】 (1)31010 (2)-210利用三角函数公式应注意的问题(1)使用公式求值,首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用. (3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.[通关练习]1.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A.因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.2.(优质试题·湖南省东部六校联考)已知角α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225B.2425C .-2425D .-1225解析:选B.因为α为锐角,cos ⎝⎛⎭⎫α+π6=45>0,所以α+π6为锐角,sin ⎝⎛⎭⎫α+π6=1-cos 2⎝⎛⎭⎫α+π6=35,所以sin ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2425,故选B.三角函数公式的活用(高频考点)三角函数公式的活用是高考的热点,高考多以选择题或填空题的形式出现,研究三角函数的性质和解三角形常应用三角函数公式.高考对三角函数公式的考查主要有以下两个命题角度:(1)两角和与差公式的逆用及变形应用; (2)二倍角公式的活用.[典例引领]角度一 两角和与差公式的逆用及变形应用(1)已知sin α+cos α=13,则sin 2(π4-α)=( )A.118 B.1718 C.89D.29(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B.22C.12D .-12【解析】 (1)由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos (π2-2α)2=1-sin 2α2=1+892=1718.(2)由tan A tan B =tan A +tan B +1,可得tan A +tan B 1-tan A tan B=-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.【答案】(1)B (2)B 角度二二倍角公式的活用cos 15°-sin 15°cos 15°+sin 15°=________.【解析】 法一:原式=1-tan 15°1+tan 15°=tan 45°-tan 15°1+tan 45°tan 15°=tan 30°=33.法二:原式=2(sin 45°cos 15°-cos 45°sin 15°)2(sin 45°cos 15°+cos 45°sin 15°)=sin 30°sin 60°=1232=33.法三:因为⎝ ⎛⎭⎪⎫cos 15°-sin 15°cos 15°+sin 15°2=1-sin 30°1+sin 30°=13. 又cos 15°-sin 15°cos 15°+sin 15°>0, 所以cos 15°-sin 15°cos 15°+sin 15°=33.【答案】33三角函数公式的应用技巧运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.[通关练习]1.(1-tan 15°)cos 15°的值等于( ) A.1-32B .1 C.32D.12解析:选C.(1-tan 215°)cos 215°=cos 215°-sin 215°=cos 30°=32. 2.(优质试题·河北衡水中学三调考试)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118 C .-1718D.1718解析:选C.由3cos 2α=sin ⎝⎛⎭⎫π4-α可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin α·cos α=118,故sin 2α=-1718.故选C.角的变换[典例引领](1)(优质试题·四川成都摸底)已知sin 2α=35⎝⎛⎭⎫π2<2α<π,tan(α-β)=12,则tan(α+β)等于( ) A .-2 B .-1 C .-211D.211(2)(优质试题·六盘水质检)已知cos α=13,cos(α+β)=-13,且α、β∈⎝⎛⎭⎫0,π2,则cos(α-β)的值等于( ) A .-12B.12C .-13 D.2327【解析】 (1)因为sin 2α=35,2α∈⎝⎛⎭⎫π2,π, 所以cos 2α=-45,tan 2α=-34,tan(α+β)=tan[2α-(α-β)]= tan 2α-tan (α-β)1+tan 2αtan (α-β)=-2.(2)因为α∈⎝⎛⎭⎫0,π2,所以2α∈(0,π). 因为cos α=13,所以cos 2α=2cos 2α-1=-79,所以sin 2α=1-cos 22α=429, 而α,β∈⎝⎛⎭⎫0,π2,所以α+β∈(0,π), 所以sin(α+β)=1-cos 2(α+β)=223,所以cos(α-β)=cos[2α-(α+β)] =cos 2αcos(α+β)+sin 2αsin(α+β) =⎝⎛⎭⎫-79×⎝⎛⎭⎫-13+429×223=2327. 【答案】 (1)A (2)D若本例(2)条件不变,求cos 2β的值.解:因为cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,所以α+β∈(0,π), 所以sin α=223,sin(α+β)=223,cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-13×13+223×223=79.所以cos 2β=2cos 2β-1=2×⎝⎛⎭⎫792-1=1781.角的变换技巧(1)当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(3)常用拆分方法:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. [通关练习]1.已知tan(α+β)=1,tan ⎝⎛⎭⎫α-π3=13,则tan ⎝⎛⎭⎫β+π3 的值为( ) A.23 B.12 C.34D.45解析:选B.tan ⎝⎛⎭⎫β+π3=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫α-π3=tan (α+β)-tan ⎝⎛⎭⎫α-π31+tan (α+β)tan ⎝⎛⎭⎫α-π3=1-131+1×13=12. 2.(优质试题·湖南郴州模拟)已知α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫α+π4=45,则tan α=________. 解析:因为α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫α+π4=45, 所以α+π4∈⎝⎛⎭⎫π4,π2, 所以cos ⎝⎛⎭⎫α+π4=1-sin 2⎝⎛⎭⎫α+π4=35, 所以tan ⎝⎛⎭⎫α+π4=43, 所以tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π4=43-11+43×1=17. 答案:17运用三角函数公式时,不但要熟悉公式的直接应用,还要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力. 易错防范(1)在使用两角和与差的余弦或正切公式时运算符号易错.1.计算-sin 133°cos 197°-cos 47°cos 73°的结果为( ) A.12 B.33 C.22D.32解析:选A.-sin 133°cos 197°-cos 47°cos 73° =-sin 47°(-cos 17°)-cos 47°sin 17° =sin(47°-17°)=sin 30°=12.2.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .-1 B .0 C.12D .1解析:选A.因为sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, 所以12cos α-32sin α=32cos α-12sin α,所以⎝⎛⎭⎫12-32sin α=⎝⎛⎭⎫32-12cos α,所以sin α=-cos α,所以tan α=-1.3.若α∈⎝⎛⎭⎫π2,π,tan ⎝⎛⎭⎫α+π4=17,则sin α等于( ) A.35 B.45 C .-35D .-45解析:选A.因为tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=17,所以tan α=-34=sin αcos α,所以cos α=-43sin α.又因为sin 2α+cos 2α=1,所以sin 2α=925.又因为α∈⎝⎛⎭⎫π2,π,所以sin α=35. 4.已知cos ⎝⎛⎭⎫π6-α=33,则sin ⎝⎛⎭⎫5π6-2α的值为( ) A.13 B .-13C.23D .-23解析:选B.sin ⎝⎛⎭⎫5π6-2α=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π3-2α =cos ⎝⎛⎭⎫π3-2α=2cos 2⎝⎛⎭⎫π6-α-1=2×⎝⎛⎭⎫332-1=-13.5.(优质试题·兰州市实战考试)sin 2α=2425,0<α<π2,则2cos ⎝⎛⎭⎫π4-α的值为( ) A .-15B.15C .-75 D.75解析:选D.2cos ⎝⎛⎭⎫π4-α=2⎝⎛⎭⎫22cos α+22sin α=sin α+cos α,又因为(sin α+cos α)2=1+2sin αcos α=1+sin 2α=4925,0<α<π2,所以sin α+cos α=75,故选D.6.(优质试题·贵州省适应性考试)已知α是第三象限角,且cos ()α+π=45,则tan 2α=________.解析:由cos(π+α)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tanα=34,故tan 2α=2tan α1-tan 2α=247.答案:2477.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝⎛⎫β+5π4=________. 解析:依题意可将已知条件变形为 sin[(α-β)-α]=-sin β=35,sin β=-35.又β是第三象限角,因此有cos β=-45.sin ⎝⎛⎭⎫β+5π4=-sin(β+π4)=-sin βcos π4-cos βsin π4=7210.全国名校高考数学复习优质学案汇编(理科,附详解)8.(优质试题·兰州市高考实战模拟)若sin α-sin β=1-32,cos α-cos β=12,则cos(α-β)=________.解析:由sin α-sin β=1-32,得(sin α-sin β)2=⎝⎛⎭⎫1-322,即sin 2α+sin 2β-2sin αsin β=74-3,①由cos α-cos β=12,得cos 2α+cos 2β-2cos αcos β=14,② ①+②得,2sin αsin β+2cos αcos β=3,即cos(α-β)=32. 答案:32 9.已知tan α=2.(1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1= 2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1. 10.已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求cos θ的值. 解:(1)f ⎝⎛⎭⎫5π12=A sin ⎝⎛⎭⎫5π12+π3=A sin 3π4=22A =322, 所以A =3.(2)f (θ)-f (-θ)=3sin ⎝⎛⎭⎫θ+π3-3sin ⎝⎛⎭⎫-θ+π3。