[配套K12]2016年秋九年级数学上册 第1章 反比例函数 反比例函数k小于0的图像与性质导学案
- 格式:doc
- 大小:170.00 KB
- 文档页数:4
1.2 反比例函数的图象与性质1.2.1 反比例函数的图象与性质(一)教学目标1.体会并了解反比例函数的图象的意义 2.能描点画出反比例函数的图象3.结合图象分析并掌握当k >0时反比例函数的性质 重点难点重点:反比例函数的图象及当k >0时反比例函数的性质 难点:绘制反比例函数的图象 教学设计 一、预习导学自主预习教材P5-7,并思考下列问题:1.画反比例函数图象的步骤是 、 、 .2.反比例函数y=kx(k 为常数,k ≠0)的图象是 ,当K >0时,双曲线的两支分别位于第 、 象限,它们与 轴、 轴都不相交,在每个象限内,y 随x 的增大而 . 3.函数xy 20=的图象在第 象限,在每一象限内,y 随x 的增大而 . 二、探究展示 (一)合作探究 如何画反比例函数xy 6=的图象? 由组长带领本组组员共同探讨完成。
由于反比例函数y=x6的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需要分几个层次来探求:(1) 可以先估计 例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等); (2)方法与步骤——利用描点作图;列表:取自变量x 的哪些值? ——x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点?在平面直角坐标系内,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点。
连线:怎样连线? ——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
观察上图,图象位于哪些象限?图象与坐标轴相交吗?在每一象限内,函数值y 随自变量x 的变化如何变化?(点名回答)设计意图:学习正确的作图过程,在填表过程中感受y 随x 的变化规律,为基于图象探究函数性质打下基础. (二)展示提升1.完成P6做一做,画出反比例函数xy 3=的图象设计意图:提高学生利用描点法画反比例函数的基本技能,加深学生对反比例函数图象的认识,为下一步归纳反比例函数的性质做准备. 2.观察画出的x y 6=,xy 3=的图象,思考下列问题: (1)每个函数的图象分别位于哪些象限?(2)在每一象限内,函数值y 随自变量x 的变化如何变化? 先由小组讨论交流,教师准确引导,及时点拨和追问,总结出规律: 一般的,当K 〉0时,反比例函数y=kx的图象由分别在第一、第三象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而减小。
第一章反比例函数1.1反比例函数1.了解反比例函数的基本概念及确定反比例函数自变量的范围.2.学会根据实际情况确定反比例函数自变量的取值范围.(重点,难点)3.学会利用反比例函数的基本形式建立简单的数学模型.一、情境导入你吃过拉面吗?有人能拉到细如发丝,同时还能做到丝丝分明.实际上在做拉面的过程中就渗透着数学知识.一定体积的面团做成拉面,面条的总长度与面条的粗细之间有什么关系呢?二、合作探究探究点一:反比例函数的相关概念【类型一】反比例函数的识别及比例系数下列函数中,哪些一定是反比例函数,若是,写出其比例系数.①y=3x;②y=m2+1x(m为常数);③y=3x-2;④y=-6x;⑤y=-4x-1;⑥xy=2.解析:②中m2+1≠0,故y=m2+1x是反比例函数;④中y=-6x是反比例函数;⑤中y =-4x-1=-4x是反比例函数;⑥中xy=2可变形为y=2x,也满足定义.所以②④⑤⑥是反比例函数.①为正比例函数,③中y与x-2成反比例,但y不是x的反比例函数.求比例系数先将其化为y=kx的形式,k即为比例系数.解:一定是反比例函数的有:②④⑤⑥;②y=m2+1x(m为常数)的比例系数为m2+1,④y=-6x的比例系数为-6,⑤y=-4x-1的比例系数是-4,⑥xy=2的比例系数为2.方法总结:(1)辨别一个函数是否为反比例函数,必须具备y =kx (k 为常数,k ≠0)的形式,且比例系数不为0;(2)反比例函数可写成如下三种形式:①y =k x ,②xy =k ,③y =kx -1,但要注意三种形式中都有k ≠0.【类型二】根据反比例函数的概念求字母系数的值若函数y =(m +1)xm -2是反比例函数,求m 的值.解:由反比例函数的定义可知,⎩⎪⎨⎪⎧m 2-2=-1,m +1≠0,解得m =1.方法总结:反比例函数的基本形式y =kx -1(k ≠0,k 为常数),解题时k 的取值不为0及x 项的次数为-1,两个条件缺一不可.探究点二:反比例函数自变量的取值范围及函数值已知反比例函数y =-12x .(1)写出这个函数自变量的取值范围; (2)求当x =-12时函数的值;(3)求当y =2时自变量x 的值.解析:(1)中反比例函数的自变量x 位于分母的位置,其取值范围为x ≠0,(2)(3)中求函数和自变量的值,分别把已知量代入y =-12x中即可求出结果.解:(1)x ≠0;(2)把x =-12代入y =-12x 得,y =-12×(-12)=1.即当x =-12时,函数的值为1;(3)当y =2时,-12x =2,解得x =-14.即当y =2时,自变量x 的值为-14.方法总结:反比例函数的自变量的取值范围是所有非零实数,但在实际问题中,应该根据具体情况来确定(如例4).探究点三:建立简单的反比例函数模型如图所示,某学校广场有一段25米长的旧围栏(图中用线段AB 表示).现打算利用该围栏的一部分(或全部)为一边建成一块面积为100米2的矩形草坪(图中的矩形CDEF ,CD <CF ).设所利用的旧围栏CF 的长度为x 米,新围栏CD 的长度为y 米.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若利用旧围栏12米,整修旧围栏的价格为1.75元/米,建新围栏的价格为4.5元/米,则计划修建费用应为多少元?解析:可先利用面积把长与宽表示出来,再写出y 与x 之间的关系,再利用x =12求出y 的值.解:(1)∵S 矩形CDEF =CD ·CF =xy =100,∴y =100x (10<x ≤25).(2)由(1)知,当x =12时,y =253.计划修建费用为:1.75x +4.5(x +200x )=6.25x +900x=6.25×12+90012=150(元).即计划修建费用应为150元.方法总结:解此类题型,首先要理解题意,然后根据已知条件选择合适的数学模型,最后根据实际情况确定自变量的取值范围.三、板书设计反比例函数⎩⎪⎨⎪⎧定义自变量:x ≠0形式⎩⎪⎨⎪⎧y =kx (k ≠0)xy =k (k ≠0)y =kx -1(k ≠0).教学过程中,注重引导学生就生活实例展开联想,直观地感受数学的魅力所在.在自主探究和合作交流过程中,适时引入新知识.并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.1.2 反比例函数的图象与性质第1课时 反比例函数y =kx(k >0)的图象与性质1.了解反比例函数图象绘制的一般步骤并学会绘制简单的反比例函数图象. 2.了解并学会应用反比例函数y =kx(k >0)图象的基本性质.(重点,难点)一、情境导入已知某面粉厂加工出4000吨面粉,厂方决定把这些面粉全部运往B 市.所需要的时间t (天)和每天运出的面粉总重量m (吨)之间有怎样的函数关系?你能在平面直角坐标系中形象地画出这个图形吗?二、合作探究探究点一:作反比例函数y =kx(k >0)图象的步骤画出反比例函数y =8x的图象.解析:画出函数的图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x ≠0. 解:描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点. 连线:用光滑的曲线顺次连接各点,即可得y =8x的图象.如图:方法总结:绘制反比例函数的图象与绘制一次函数的图象的步骤基本一致,不同之处在于反比例函数图象为曲线,连线时应该尽量保证线条自然.探究点二:反比例函数y =kx (k >0)的图象与性质=k( 已知函数y =kx 的图象经过点(6,1),则下列各点在该函数图象上的是( )A .(-2,3)B .(-1,-6)C .(1,-6)D .(2,-6)解析:把(6,1)代入y =k x ,k =1×6=6.即y =6x .∵(-2)×3=-6,(-1)×(-6)=6,1×(-6)=-6,2×(-6)=-12,∴(-1,-6)符合y =6x,故选B.方法总结:根据题意可求得函数解析式,将各项中点的坐标代入即可得正确选项.【类型二】反比例函数y =kx(k >0)图象的增减性已知反比例函数y =kx的图象过点(-2,-3),函数图象上有两点A (27,y 1),B (5,y 2),则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定解析:由题设可知反比例函数的解析式为y =6x ,根据其图象性质可知点A ,B 均位于第一象限内的函数图象上,∵x A >x B ,∴y 1<y 2.故选C.方法总结:解此类题型时,先要由k 的符号判断函数的增减性,再确定是不是在同一个分支上,再根据情况解题.三、板书设计函数y =kx(k >0)⎩⎪⎨⎪⎧图象的画法(描点法):列表、描点、连线图象:由在第一、三象限内的两支曲 线组成性质:在每个象限内,y 随x 的增大 而减小本次教学过程中,引导学生动手绘制函数图象,切实感受函数图象的基本特性,在加深学生理解的同时提升学生动手解决问题的能力.在自主探究和合作交流过程中,学生能力得到有效提升,并为下一课时的学习打下良好的基础. 第2课时 反比例函数y =kx(k <0)的图象与性质1.了解反比例函数y =kx (k <0)的相关性质(重点,难点).2.理解双曲线的概念以及其与反比例函数的联系.(重点,难点) 3.利用双曲线的性质解决简单的数学问题.一、情境导入在一个平面直角坐标系中,根据所提供的数据描绘出相应的反比例函数图象. 观察这两个图象,试着求出它们的解析式,看看它们之间是否存在着某些关系? 二、合作探究探究点一:作反比例函数y =kx(k <0)图象的步骤画出反比例函数y=-8x的图象.解析:画函数的图象一般分为列表、描点、连线三个步骤,注意,k<0时,图象在第二、四象限.解:列表如下:描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点.连线:用光滑的曲线顺次连接各点,即可得y=-8x的图象.如图:方法总结:y=kx(k<0)图象的画法与y=kx(k>0)的画法类似,但解题时要注意图象所在的象限.探究点二:反比数y=kx(k<0)的图象例函与性质对于函数y=-2x,下列说法正确的是()A.它的图象分别在第一、三象限B.它的图象经过点(-1,2)C.当x>0时,y的值随x的值增大而减小D.当x<0时,y的值随x的值增大而减小解析:函数y =-2x 的图象在第二、四象限,且在每个象限内,y 的值随x 值的增大而增大,当x =-1时,y =2,所以A 、C 、D 错误,B 正确.故选B.方法总结:解决这类问题需要熟练掌握反比例函数的基本图形和相关性质.探究点三:双曲线的概念及性质如图,已知直线y =mx 与双曲线y =kx的一个交点坐标为(-1,3),则它们的另一个交点坐标是()A .(1,3)B .(3,1)C .(1,-3)D .(-1,3)解析:双曲线是轴对称图形,也是以原点为对称中心的中心对称图形,故选C.方法总结:在解与反比例函数图象有关的问题时可以运用双曲线的对称性快速求解.三、板书设计教学的过程中,引导新的问题引发学生自主解答,在解决问题的过程中,加深对知识的理解和巩固.自主探究和合作交流相互结合,循序渐进,逐步积累解决问题的基本技巧,使学生能够适应考试命题方向.第3课时 反比例函数图象与性质的综合应用1.归纳总结反比例函数的图象和性质.(重点)2.理解并掌握反比例函数的比例系数k 的几何意义.(重点,难点)一、情境导入如图所示,对于反比例函数,在其图象上任取一点P ,过P 点作PQ ⊥x 轴于Q 点并连接OP.试着猜想△OPQ 的面积与反比例函数的关系,并探讨反比例函数y =kx (k ≠0)中k 值的几何意义.二、合作探究探究点一:用待定系数法确定反比例函数的解析式已知点P (-1,4)在反比例函数y =kx (k ≠0)的图象上,则k 的值是( )A .-14 B.14C .4D .-4解析:∵点P (-1,4)在反比例函数y =kx (k ≠0)的图象上,∴k =xy =(-1)×4=-4,故选D.方法总结:本题考查待定系数法确定反比例函数的解析式,已知反比例函数上一点的坐标,要求函数解析式,只要把这点的坐标代入就可求得.探究点二:反比例函数解析式中k 的几何意义如图所示,点A 在反比例函数y =kx的图象上,AC 垂直x 轴于点C ,且△AOC 的面积为2,求该反比例函数的表达式.解析:先设点A 的坐标,然后用A 的坐标表示△AOC 的面积,进而求出k 的值.解:S △AOC =12y A ·x A ,∵A 在反比例函数y =k x 的解析式上,∴x A ·y A =k ,∴S △AOC =12·k =2,∴k =4,∴反比例函数的表达式为y =4x.方法总结:过双曲线上任意一点与原点所连的线段、坐标轴与向坐标轴作垂线所围成的直角三角形的面积等于|k |值的一半.探究点三:反比例函数的图象与性质的综合应用若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都是反比例函数y =1x的图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是__________________.解析:∵k =1>0,∴y =1x 的图象位于第一、三象限,且在每一个象限内y 随x 的增大而减小,∵x 1<0<x 2<x 3,∴y 1<0<y 3<y 2,故y 1<y 3<y 2.方法总结:解决这类问题时应该从反比例函数图象性质入手,通过图象在不同象限中的性质来判断点的坐标的大小关系,解题时可画出反比例函数的大致图象,方便解答.探究点四:反比例函数与一次函数的综合 【类型一】反比例函数与一次函数图象的综合在同一直角坐标系中,函数y =kx -k 与y =kx(k ≠0)的图象大致是()解析:在同一直角坐标系中,函数y =kx -k 与y =kx (k ≠0)的图象只有两种情况,当k >0时,y =k x 分布在第一、三象限,此时y =kx -k 经过第一、三、四象限;当k <0时,y =kx 分布在第二、四象限,此时y =kx -k 经过第一、二、四象限,故选D.方法总结:判断函数图象分布是否正确,主要通过假设条件,根据函数的图象及性质判断,若与选项一致则正确;若相矛盾,则错误.【类型二】反比例函数与一次函数图象与性质的综合如图所示,一次函数y =ax +b 的图象与反比例函数y =kx的图象交于M 、N 两点.(1)求反比例函数与一次函数的表达式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.解析:(1)把点N (-1,-4)代入y =k x即可求出反比例函数解析式,进而求出点M ,再把M 、N 代入一次函数即可求出一次函数的解析式.(2)由图象可知当反比例函数大于一次函数时x 的取值范围是x <-1或0<x <2.解:(1)由反比例函数定义可知k =(-1)×(-4)=4.∴y =4x,而M (2,m )在反比例函数图象上. ∴m =42=2,∴M (2,2). 即在一次函数图象上有⎩⎪⎨⎪⎧2a +b =2,-a +b =-4,∴a =2,b =-2,∴y =2x -2.(2)由图中观察可知,满足题设x 的取值范围为x <-1或0<x <2.方法总结:分别利用反比例函数和一次函数的定义求出其解析式,根据图象和性质判断,在解题过程中要考虑全面,不要漏解.三、板书设计函数y =k x (k ≠0)⎩⎪⎨⎪⎧k >0⎩⎪⎨⎪⎧图象:第一、三象限性质:在每个象限内,y 随x 的增大而减小k <0⎩⎪⎨⎪⎧图象:第二、四象限性质:在每个象限内,y 随x 的增大而增大本次教学过程重在归纳总结,通过引导学生主动参与来加深其对知识的理解,在结合基本题型教学的同时,通过发散思维的引导,进一步提升学生的创新思维和实际动手能力,全面提升学生的认知水平.1.3 反比例函数的应用1.学会利用反比例函数解决简单几何问题.(重点,难点)2.利用反比例函数构建数学模型解决实际问题.(重点,难点)一、情境导入小明和小华相约早晨一起骑自行车从A镇出发前往相距20km的B镇游玩,在返回时,小明依旧以原来的速度骑自行车,小华则乘坐公交车返回A镇.假设两人经过的路程一样,而且自行车和公交车是速度保持不变,且自行车速度小于公交车速度.你能找出两人来回时间与所乘交通工具速度间的关系吗?二、合作探究探究点一:反比例函数与简单的数学问题相结合三角形面积为6,它的底边a与这条边上的高h的函数关系式是____________.解析:由三角形面积公式得6=12ah,∴h=12a,又a>0,故填h=12a(a>0).方法总结:数学中一些常见问题可以利用反比例函数进行求解,在构建基本的数学模型时,不要忽略反比例函数的基本性质.探究点二:反比例函数在实际生活中的应用某村的粮食总产量为a(a为常数)吨,该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图象应为()解析:由题可知,a=x·y,∴y=ax(a为常数)是反比例函数.∵a>0,x>0,y>0,∴图象位于第一象限,故选C.方法总结:将生活中的问题转化成为数学问题,利用所学知识构建数学模型.本题考查的是反比例函数的图象的性质,在解题时要准确理解题意,选择正确的数学模型.探究点三:反比例函数在物理问题中的应用一人站在平放在湿地上的木板上,当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力为600N,回答下列问题:(1)用含S 的代数式表示p ,p 是S 的反比例函数吗?为什么?(2)当木板面积为0.2m 2时,压强是多少?(3)如果要求压强不超过6000Pa ,那么木板面积至少要多大?(4)画出相应的函数图象.解析:根据两个变量之间的关系确定两个变量之间的函数解析式,首先要判断它属于哪一类函数,然后根据实际意义解题,并注意自变量的取值范围,进而画出正确的函数图象.解:随着木板面积S (m 2)变小(或大),压强p (Pa)将变大(或小).(1)p =600S,所以p 是S 的反比例函数,符合反比例函数的定义. (2)p =6000.2=3000(Pa),所以当面积为0.2m 2时,压强是3000Pa. (3)若压强p =600S≤6000,解得S ≥0.1,故木板面积至少为0.1m 2. (4)函数图象如图所示.方法总结:反比例函数应用的常用解题思路是:(1)根据题意确定反比例函数解析式;(2)由反比例解析式及题中条件去解决实际问题.三、板书设计反比例函数的应用⎩⎪⎨⎪⎧应用类型⎩⎪⎨⎪⎧与数学问题相结合学科间的综合(物理公式)一般解题步骤⎩⎪⎨⎪⎧审题、准确判断数量关系建立反比例函数的模型根据实际情况确定自变量的取值范围实际问题求解教学过程中,将实际问题和数学问题相结合,引导学生根据所学自主构建数学模型,直观地感受数学的魅力所在.在引导学生建立新的数学模型解决实际问题的同时,开拓思维,培养创新意识,提升学生解题技能.。
反比例函数y =k
x
(k <0)的图象与性质
【学习目标】
1.能用描点法画出反比例函数y =k
x
(k<0)的图象.
2.通过观察、分析,理解和掌握反比例函数y =k
x (k<0)的图象与性质.
3.体会数形结合的思想方法,学会从函数图象中获取信息. 【学习重点】
掌握画反比例函数图象的方法,理解反比例函数y =k
x (k<0)的性质.
【学习难点】
运用反比例函数的性质解题. 情景导入 生成问题 回顾:
1.反比例函数y =k x 的图象经过点(1,2),则它的函数表达式为y =2
x
,图象在第一、三象限,函数值y 随自变量
x 的增大而减小.
2.反比例函数y =k
x
的图象与正比例函数y =-3x 的图象交于点A(1,m),则m =-3,反比例函数的表达式为y
=-3x .
自学互研 生成能力
知识模块一 反比例函数y =k
x (k<0)的图象
阅读教材P 8~P 9,完成下面的内容:
画反比例函数图象只要列表、描点、连线三个步骤就可以了.
反比例函数y =k
x
(k<0)的自变量x 的取值范围是x≠0,所以自变量x 的值可以选取绝对值相等而符号相反的对应
数值,这样既可以简化计算,又便于描点.
师生合作探究并归纳出反比例函数y =k
x
(k<0)的图象特征.
归纳:反比例函数y =k
x
(k<0)的图象是由两支分别分布在第二、四象限的曲线组成,这两支曲线称为双曲线.
【例1】 画反比例函数y =-2
x 的图象.
解:(1)列表:
(2)描点;
(3)连线:用光滑的曲线顺次连接各点,即可得到函数y =-2
x 的图象.
知识模块二 反比例函数y =k
x (k<0)的图象与性质
学完知识模块一后,完成下面的填空:
师生合作共同探究并归纳出反比例函数y =k
x
(k<0)的性质.
当k<0时,反比例函数y =k x 的图象与y =-k x 的图象关于x 轴对称,从而当k<0时,反比例函数y =k
x
的图象中两
支曲线都与x 轴、y 轴不相交,图象在第二、四象限,在每一象限内,函数值随自变量取值的增大而增大. 【例2】 已知函数y =(m -2)x3-m 2
为反比例函数. (1)求m 的值;
(2)它的图象在第几象限内?在各象限内,随着x 的增大y 如何变化? (3)当-3≤x≤-1
2
时,求此函数的最大值和最小值.
解:(1)由反比例函数的定义可知⎩⎪⎨⎪⎧3-m 2=-1,
m -2≠0.
解得,m =-2.(2)因为k =-4<0,所以反比例函数的图象在第
二、四象限内,在各象限内,y 随x 的增大而增大.(3)因为在每个象限内,y 随x 的增大而增大,所以当x =-
1
2
时,y 最大值=-4-12
=8;当x =-3时,y 最小值=-4-3=43.所以当-3≤x≤-1
2时,此函数的最大值为8,最
小值为43.
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 反比例函数y =k
x
(k<0)的图象
知识模块二 反比例函数y =k
x (k<0)的图象与性质
检测反馈 达成目标
1.当x>0时,函数y =-5
x
的图象在( A )
A .第四象限
B .第三象限
C .第二象限
D .第一象限
2.若函数y =m +2
x
的图象在其所在的每一个象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是
( A )
A .m<-2
B .m<0
C .m>-2
D .m>0
3.已知A(-1,y 1),B(2,y 2)两点在双曲线y =3+2m
x
上,且y 1>y 2,则m 的取值范围是( D )
A .m<0
B .m>0
C .m>-32
D .m<-32
4.已知反比例函数y =k
x
(k 是常数,k ≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那
么这个反比例函数的表达式是__y =-1
x (不唯一)__(只需写一个).
5.已知反比例函数的图象过点(1,-2). (1)求这个函数的表达式;
(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上?
解:(1)设:反比例函数的表达式为:y =k
x (k≠0).而反比例函数的图象过点(1,-2),即当x =1时,
y =-2.所以-2=k 1,k =-2.∴y=-2
x
(2)点A(-5,m)在反比例函数y =-2x 图象上.所以m =-2-5=2
5,
点A 的坐标为⎝
⎛⎭⎪⎫-5,25.
点A 关于x 轴的对称点⎝
⎛⎭⎪⎫-5,-25不在这个图象上;
点A 关于y 轴的对称点⎝ ⎛⎭⎪⎫5,25不在这个图象上;点A 关于原点的对称点⎝ ⎛⎭⎪⎫5,-25在这个图象上.
课后反思 查漏补缺
1.收获:______________________________________________________________________ 2.存在困惑:________________________________________________________________________。