07第7章 热力学基础
- 格式:doc
- 大小:863.50 KB
- 文档页数:23
热力学知识:热力学中的热力学基本理论热力学是自然科学领域中研究热、能量和物质相互关系的学科,是物理学、化学、工程学和生物学等学科之间交叉融合的前沿领域。
热力学基本理论是热力学的基础,它描述了热力学系统中的能量和物质的宏观行为及其相互作用关系,是理解和应用热力学的关键。
一、热力学基本概念1.系统和环境在热力学中,我们通常将研究对象称之为“系统”,而将实验室外部相对于系统的部分称为“环境”。
系统和环境之间可以有热、功和物质的变化,系统和环境总是通过一种或多种形式的相互作用联系在一起。
热力学系统可以分为开放系统、闭合系统和孤立系统三种类型。
开放系统可以与周围环境进行质量交换,闭合系统在保持质量不变的同时可以与环境进行能、质量交换,而孤立系统不能与环境进行质量和能量的交换。
热力学函数是热力学系统中各种状态量之间的函数关系,可以描述热力学系统中的各种宏观参数。
其中,压力、温度、体积和摩尔数这四个参数成为状态变量,它们的变化直接决定了热力学系统的状态。
热力学函数包括内能、焓、自由能和吉布斯自由能等。
内能是热力学系统中所有微观粒子的能量和,焓是内能和体积之积,自由能是内能和温度乘积减去体积和摩尔数乘积的和,而吉布斯自由能则是内能、压强、温度、体积和摩尔数的函数。
3.热力学过程热力学过程是指在热力学系统中,各种状态量随着时间的推移而发生变化的过程。
热力学过程可以分为等温过程、等压过程、等体过程、绝热过程等。
在等温过程中,热力学系统的温度保持不变,而压强和体积发生变化;在等压过程中,热力学系统的压强保持不变,而体积和温度发生变化。
等体过程和等温过程非常相似,只是不同的状态方程和热力学函数在等体过程中起作用。
热力学定律是描述热力学系统中能量守恒和热力学过程的基本法则。
目前,人们已经发现了四条基本热力学定律,分别为零热力学定律、第一热力学定律、第二热力学定律和第三热力学定律。
1.零热力学定律零热力学定律说的是,如果两个热力学系统和第三个热力学系统达到热平衡,则这三个热力学系统之间既可以相互交换热量,又可以相互交换功、质量等,其温度是相等的。
第七章薄膜的形成薄膜结构和性能的差异与薄膜形成过程中的许多因素密切相关。
因此,在讨论薄膜结构和性能之前,先研究薄膜的形成问题。
虽然薄膜的制备方法有许多种类,薄膜形成的机制各不相同,但是在许多方面,还是具有其共性特点。
在本章中,我们以真空蒸发薄膜的形成为例进行重点讨论。
§7-l 凝结过程薄膜的形成一般分为凝结过程、核形成与生长过程、岛形成与结合生长过程。
凝结过程是薄膜形成的第一阶段。
凝结过程是从蒸发源中被蒸发的气相原子、离子或分子入射到基体表面之后,从气相到吸附相,再到凝结相的一个相变过程。
一、吸附过程一个气相原子入射到基体表面上,能否被吸附,是物理吸附还是化学吸附,是一个比较复杂的问题。
固体表面与体内在晶体结构上一个重大差异就是原子或分子间的结合化学键中断。
原子或分子在固体表面形成的这种中断键称为不饱和键或悬挂键。
这种键具有吸引外来原子或分子的能力。
入射到基体表面的气相原子被这种悬挂键吸引住的现象称为吸附。
如果吸附仅仅是由原子电偶极矩之间的范德华力起作用称为物理吸附;若吸附是由化学键结合力起作用则称为化学吸附。
固体表面的这种特殊状态使它具有一种过量的能量称为表面自由能。
吸附现象使表面自由能减小。
伴随吸附现象的发生而释放的一定的能量称为吸附能。
将吸附在固体表面上的气相原子除掉称为解吸,除掉被吸附气相原子的能量称为解吸能。
因为从蒸发源入射到基体表面的气相原子都有一定的能量。
它们到达基片表面之后可能发生三种现象;(1)与基体表面原子进行能量交换被吸附;(2)吸附后气相原子仍有较大的解吸能,在基体表面作短暂停留后再解吸蒸发(再蒸发或二次蒸发);(3)与基体表面不进行能量交换,入射到基体表面上立即反射回去。
用真空蒸发法制备薄膜时,入射到基体表面上的气相原子中的绝大多数都与基体表面原子进行能量交换形成吸附。
将吸附过程用能量关系表示时可由图7-1说明。
当入射到基体表面的气相原子动能较小时,处于物理吸附状态,其吸附能用Q p表示。
第七章热力学第一定律一选择题1. 图为质量一定的某理想气体由初态a 经两过程到达末状态c ,其中abc 为等温过程,那么〔〕A . adc 也是一个等温过程B . adc 和abc 过程吸收的热量相等C . adc 过程和abc 过程做功一样D . abc 过程和adc 过程气体内能变化一样 解:热量和功均是过程量,内能是状态量。
故答案选D 。
2. 有两个一样的容器,容积不变,一个盛有氦气,另一个盛有氢气,〔看成刚性分子〕,它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气的温度升高,如果使氦气也升高同样的温度,那么应向氦气传递热量是 ( )A . 6J B. 5J C. 3J D. 2J解:氦气是单原子分子,自由度为3,氢气是双原子分子,自由度为5。
根据理想气体的状态方程,两种气体的摩尔数一样。
容器容积不变,气体吸收的热量全部转化为内能。
再根据理想气体的内能公式,使氦气也升高同样的温度,应向氦气传递热量是3J 。
答案选C 。
3. 1mol 的单原子分子理想气体从状态A 变为状态B ,如果不知是什么气体,变化过程也不知道,但A 、B 两态的压强、体积和温度都知道,那么可求出( )A.气体所作的功B.气体内能的变化C.气体传给外界的热量D.气体的质量 解 答案:B4. 系统从状态A 经某一过程到达状态B ,过程吸热10J ,系统内能增量为5J 。
现系统沿原过程从状态B 返回状态A ,那么系统对外作功是( )A. -15JB. -5JC. 5JD. 15J解 热力学第一定律的表达式W U Q +∆=,系统从A 态经某一过程到达B 态时系统做的功为5510=-=∆-=U Q W J 。
因此当系统沿原过程从B 态返回A 态时,系统对外做功为-5J 。
因此答案选B 。
5. 用公式T C U V ∆=∆m ,ν计算理想气体内能增量时,此式 ( ) A.只适用于准静态的等体过程B.只适用于一切等体过程C.只适用于一切准静态过程D.适用于一切始末态为平衡态的过程选择题1图解 答案选D6.对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于 ( )A. 2/3B.1/2C.2/5D.2/7 解 答案选 D7. 理想气体初态的体积为V 1,经等压过程使体积膨胀到V 2,那么在此过程中,气体对外界作 〔 〕 A .正功,气体的内能增加B .正功,气体的内能减少 C .负功,气体的内能增加D .负功,气体的内能减少解 等压膨胀过程系统对外作正功,由于压强不变体积增加,所以温度升高,因此气体的内能增加。
V思考题7-6图思 考 题7-1 “功,热量和内能都是系统状态的单值函数”这种说法对吗?答:仅内能是系统状态的单值函数, 功,热量是过程量,即使初、末状态一定,经历不同的过程,系统所做的功和吸收的热量不同.7-2 一物质系统从外界吸收一定的热量,则 (A) 系统的内能一定增加. (B) 系统的内能一定减少. (C) 系统的内能一定保持不变.(D) 系统的内能可能增加,也可能减少或保持不变. 解:改变系统的内能有两种方式:做功和热传递,选[ D ]7-3 一定量的理想气体处于热动平衡状态时,此热力学系统有三个宏观量不随时间变化,是哪三个? [ 体积、温度和压强 ]解:是描述热力学系统的三个宏观量参量: [ 体积、温度和压强 ]7-4 一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中(A) 气体向外界放热 (B) 气体对外界作正功 (C) 气体内能增加 (D) 气体内能减少解:从P-V 图上可知系统作逆循环,外界对系统做功,而内能不变,故气体向外界放热.选[ A ]7-5 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值?(A) 等体降压过程. (B) 等温膨胀过程. (C) 绝热膨胀过程. (D) 等压压缩过程.解: 等压压缩过程体积减小,温度降低,外界对气体做功,内能减少,放热, 系统所吸收的热量、内能的增量和对外作的功三者均为负值。
前三选项总有一者为零。
选[ D ]7-6 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A) 是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C, 两过程吸热一样多.解: A →B 过程对外做功最多,内能增量最大,根据热力学第一定律,E A Q ∆+=,A →B 过程吸热量最多。