第七章热力学基础
- 格式:pdf
- 大小:428.03 KB
- 文档页数:45
第七章统计热⼒学基础第七章统计热⼒学基础⼀、选择题1、统计热⼒学主要研究()。
(A) 平衡体系(B)单个粒⼦的⾏为案(C) ⾮平衡体系(D) 耗散结构2、能量零点的不同选择,在下⾯诸结论中哪⼀种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热⼒学函数值⽆影响:( )(A) U (B) S (C) G (D) H4、统计热⼒学研究的主要对象是:()(A) 微观粒⼦的各种变化规律(B) 宏观体系的各种性质(C) 微观粒⼦的运动规律(D) 宏观系统的平衡性质5、对于⼀个U,N,V确定的体系,其微观状态数最⼤的分布就是最可⼏分布,得出这⼀结论的理论依据是:()(A) 玻兹曼分布定律(B) 等⼏率假设(C) 分⼦运动论(D) 统计学原理6、以0到9这⼗个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同⼀种⽓体分⼦,其平动、转动、振动和电⼦运动的能级间隔的⼤⼩顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热⼒学中,对物系的分类按其组成的粒⼦能否被分辨来进⾏,按此原则:()(A) ⽓体和晶体皆属定域⼦体系(B) ⽓体和晶体皆属离域⼦体系(C) ⽓体属离域⼦体系⽽晶体属定域⼦体系(D) ⽓体属定域⼦体系⽽晶体属离域⼦体系9、对于定域⼦体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒⼦的能级 1, 2, ....., i⼀定,但简并度g1, g2, ....., g i及总微观状态数不确定。
第七章 热力学基础基 本 要 求一、理解功和热量的概念以及准静态过程。
二、掌握热力学第一定律;能熟练地分析、计算理想气体各等值过程和绝热过程中的功、热量、内能改变量及卡诺循环等简单循环过程的效率。
三、理解摩尔热容量的定义,并会用它来计算等压、等容过程中的热量。
四、了解热力学第二定律及其统计意义。
内 容 提 要一、准静态过程平衡态 不受外界影响时,系统的宏观性质不随时间改变的状态。
准静态过程 由无数个平衡态组成的过程,即系统的每个中间态都是平衡态。
准静态过程是一个理想化的过程,是实际过程的近似。
实际过程仅当进行得无限缓慢时才可看作是准静态过程 。
二、热力学第一定律W E E Q +-=12对于一元过程:dW dE dQ +=符号规定:Q > 0系统吸热;W > 0系统对外界做正功; ∆E >0系统内能增加。
热力学第一定律适用于任何系统(固、液、气)的任何过程(非准静态过程亦成立)。
三、功、内能、热量的数学表达式和意义功 通过做功可以改变系统的状态。
功是过程量,是分子的有规则运动能量和分子的无规则运动能量的转化和传递。
⎰=21V V PdV W内能 内能是状态的函数。
对于一定质量的某种气体,内能一般是T 、V 或P 的函数;对于刚性分子的理想气体,内能只是T 的函数,即T C RT iE V νν==2)(12T T C E V -=∆ν热量 传热也可改变系统的状态,其条件是系统和外界的温度不同。
Q=νC (T 2 –T 1) 其中C 为摩尔热容量。
四、气体的摩尔热容量摩尔热容量 一摩尔物质温度升高一度所吸收的热量,即⎪⎭⎫ ⎝⎛=dT dQ C ν1 理想气体等容摩尔热容量 R i C V 2=理想气体等压摩尔热容量 R C R R iC V P +=+=2泊松比 12>+==ii C C V P γ 对刚性理想气体单原子分子,i = 3,γ = 1.67; 对刚性理想气体双原子分子,i = 5,γ = 1.40; 对刚性理想气体多原子分子,i = 6,γ = 1.33。
第七章 统计热力学基础习题详解1. (1) 10个可分辨粒子分布于 n 0=4,n 1=5,n 2=1 而简并度 g 0=1,g 1=2,g 2=3 的 3 个能极上的微观状态数为多少?(2) 若能级为非简并的,则微观状态数为多少?。
解: (1)451D g 123W =N =10=120960451i n i i n ⋅⋅Π⋅⋅!!!!!!(2)D 110W =N ==1260451i n Π⋅⋅!!!!!!2. 某一分子集合在100 K 温度下处于平衡时,最低的3个能级能量分别为 0、2.05×10-22J 和 4.10×-22J ,简并度分别为1、3、5。
计算3个能级的相对分布数 n 0:n 1:n 2。
解:-22-2202.051011.38101001==1:2.593N N e⎛⎞−×⎜⎟⎜⎟××⎝⎠⋅()-22-222.05 4.10101.3810100123==0.6965N e N ⎡⎤−×−⎢⎥××⎢⎥⎣⎦⋅123=1:2.59:3.72N N N ::3. I 2分子的振动能级间隔是0.42×10-20 J ,计算在25℃时,某一能级和其较低一能级上分子数的比值。
已知玻尔兹曼常数k =1.3806×10-23 J·cm -1。
解:根据Boltzmann 分布对于一维谐振子,能级为非简并的,即+1==1i i g g ,因此 I 2分子-201+1-230.4210=exp =exp =0.360T1.380610298i+i i i N g N g k ε⎛⎞−∆−×⎛⎞⎜⎟⎜⎟××⎝⎠⎝⎠4. 一个含有N 个粒子的系统只有两个能级,其能级间隔为ε,试求其配分函数q 的最大可能值是多少?最小值是多少?在什么条件下可能达到最大值和最小值?设ε=0.1 k T 。
第七章 统计热力学基础7.1概述统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S)与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω ≈ ln W D,max ,所以,S = k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
本章7.2主要考点7.2.1统计系统的分类:独立子系统与相依子系统:粒子间无相互作用或相互作用可忽略的系统,称为独立子系统,如理想气体;粒子间相互作用不可忽略的系统,称为相依子系统。