弹性力学第三章
- 格式:ppt
- 大小:2.11 MB
- 文档页数:36
第三章应变状态分析位移与变形正应变纯变形位移与刚性转动位移应变分量坐标转轴公式主应变齐次方程组体积应变变形协调方程变形协调方程证明变形与应变分量切应变几何方程与应变张量位移增量的分解应变张量应变状态特征方程变形协调的物理意义变形协调方程的数学意义多连域的变形协调一、内容介绍本章讨论弹性体的变形,物体的变形是通过应变分量确定的。
因此,首先确定位移与应变分量的基本关系-几何方程。
由于应变分量和刚体转动都是通过位移导数表达的,因此必须确定刚体转动位移与纯变形位移的关系,才能完全确定一点的变形。
对于一点的应变分量,在不同坐标系中是不同的。
因此,应变状态分析主要是讨论不同坐标轴的应变分量变化关系。
这个关系就是应变分量的转轴公式;根据转轴公式,可以确定一点的主应变和应变主轴等。
当然,由于应变分量满足二阶张量变化规律,因此具体求解可以参考应力状态分析。
应该注意的问题是变形协调条件,就是位移的单值连续性质。
假如位移函数不是基本未知量,由于弹性力学是从微分单元体入手讨论的,因此变形后的微分单元体也必须满足连续性条件。
这在数学上,就是应变分量必须满足变形协调方程。
在弹性体的位移边界,则必须满足位移边界条件。
二、重点1、应变状态的定义:正应变与切应变;应变分量与应变张量;2、几何方程与刚体转动;3、应变状态分析和应变分量转轴公式;4、应变状态特征方程和应变不变量;主应变与应变主轴;5、变形协调方程与位移边界条件。
§3.1 位移分量与应变分量几何方程学习思路:知识点由于载荷的作用或者温度的变化,物体内各点在空间的位置将发生变化,就是产生位移。
这一移动过程,弹性体将同时发生两种可能的变化:刚体位移和变形位移。
变形位移是与弹性体的应力有着直接的关系。
弹性体的变形通过微分六面体单元描述,微分单元体的变形分为两个部分,一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化,分别使用正应变和切应变表示这两种变形的。
由于是小变形问题,单元变形可以投影于坐标平面分析。
第三章1、解:由题意可知:简支梁所受体力为F g ρ=,所以0,x y f f g ρ==应力函数为:232325432()()2106x A BAy By Cy D x Ey Fy Gy y y Hy Ky Φ=++++++--++从而得应力分量:()2232223222262(62)22622(32)(32)x x y y xy x f x Ay B x Ey F Ay By Hy Ky f y Ay By Cy D gyxx Ay By C Ey Fy G σσρτ∂Φ=-=+++--++∂∂Φ=-=+++-∂=-++-++ (a )考虑对称性,,x y σσ为x 的偶函数,xy τ为x 的奇函数。
于是得:0E F G ===。
下面考虑上下两边的边界条件:22()0,()0y hxy h y y στ=±=±==,代入(a ),得: 3208422h h h hA B C D g ρ+++-= 3208422h h h hA B C D g ρ-+-++= 23()04h x A hB C -++=即2304h A hB C ++=23()04h x A hB C --+=即2304h A hB C -+=以上四式联立得:223,0,,22g g gA B C D h h ρρρ=-===- 代入(a ),并注意0E F G ===得:2322322264+6223226+2x y xy g g x y y Hy K h h g g gy y gy h h g g xy xh ρρσρρρσρρρτ=-++=-+--= (b )现在考虑左右两个边的边界条件,由于对称性,只需考虑一边,例如右边,也就是x l =,用多项式求解,只能要求x σ在这部分边界上合成为平衡力系,也就是要求:2-2()0,h h x x l dy σ==⎰2-2()0h h x x l ydy σ==⎰。