弹性力学 第三章
- 格式:ppt
- 大小:2.65 MB
- 文档页数:69
第三章1、解:由题意可知:简支梁所受体力为F g ρ=,所以0,x y f f g ρ==应力函数为:232325432()()2106x A BAy By Cy D x Ey Fy Gy y y Hy Ky Φ=++++++--++从而得应力分量:()2232223222262(62)22622(32)(32)x x y y xy x f x Ay B x Ey F Ay By Hy Ky f y Ay By Cy D gyxx Ay By C Ey Fy G σσρτ∂Φ=-=+++--++∂∂Φ=-=+++-∂=-++-++ (a )考虑对称性,,x y σσ为x 的偶函数,xy τ为x 的奇函数。
于是得:0E F G ===。
下面考虑上下两边的边界条件:22()0,()0y hxy h y y στ=±=±==,代入(a ),得: 3208422h h h hA B C D g ρ+++-= 3208422h h h hA B C D g ρ-+-++= 23()04h x A hB C -++=即2304h A hB C ++=23()04h x A hB C --+=即2304h A hB C -+=以上四式联立得:223,0,,22g g gA B C D h h ρρρ=-===- 代入(a ),并注意0E F G ===得:2322322264+6223226+2x y xy g g x y y Hy K h h g g gy y gy h h g g xy xh ρρσρρρσρρρτ=-++=-+--= (b )现在考虑左右两个边的边界条件,由于对称性,只需考虑一边,例如右边,也就是x l =,用多项式求解,只能要求x σ在这部分边界上合成为平衡力系,也就是要求:2-2()0,h h x x l dy σ==⎰2-2()0h h x x l ydy σ==⎰。