i = 1,2, , N ; j = 1,2,, M 。记 y ij 为样本第 i 群中第 j 的小单元(次级
单元)的指标值, i = 1,2, , n ; j = 1,2, , M ,又 f =
n 是抽样比。 N
Yi = å Yij , y i = å y ij
j =1 j =1
M
M
分别是总体和样本中第 i 群的指标和,简称为群和。
过程完毕。 在求出了总体均值 Y 的无偏估计量 y 及其方差 V ( y ) 后,我们现在求估 计量方差的估计量 v( y ) 。 容易知道, v( y ) = 过程如下: 因为对群的抽样是简单随机的, 若将 Y i =
1- f 2 sb nM Yi 看作是单元指标值, 则Y i M
的样本方差
2 sb S2 2 2 是总体方差 b 的无偏估计,从而 sb 是 Sb 的无偏估计。也 M M
N
N
M
因为中间项等于零
N é M ù ( Y Y )( Y Y ) = ( Y Y ) (Yij - Y i )ú i i i ê åå å å ij i =1 j =1 i =1 ë j =1 û N M
= å (Y i - Y ) × 0
i =1
N
=0
所以平方和的分解式变为
åå (Yij - Y ) 2 = åå (Yij - Y i ) 2 + åå (Y i - Y ) 2
过程如下: 如果将 Z i =
1 M (Yij - Y i ) 2 作为单元的指标值,则它的样本均值 å M - 1 j =1
n M 1 n é 1 M 1 2ù 2 y y = ( ) ( yij - y i )2 = sw åê å ij i ú n( M - 1) åå n i =1 ë M - 1 j =1 i =1 j =1 û