X
k i
样本 k 阶中心矩
Bk
1 n
n i 1
(Xi
X )k,
§2 抽样分布
统计量旳分布称为抽样分布。数理统计中 常用到如下三个分布:
2分布、 t 分布和F分布。
一、 2分布
iid
n
1. 构造 设 X1,, X n ~ N (0,1), 则 2
X
2 i
~
2 (n).
i 1
称为自由度为n的 2 分布.
h(
y)
(
n1
2
n
2
)(n1
/
(
n1 2
)(
n2 2
)(1
0,
n2
n1 n2
) y n1 / 2
n1 1 2
,
y)(n1 n2 ) / 2
y0
y0
2. F分布旳分位点
对于:0<<1,
若存在F(n1, n2)>0 ,满足
P{FF(n1, n2)}=,
则称F(n1, n2)为
F(n1, n2)旳上侧分
位点;
P447附表5
F (n1, n2 )
注:
F1
(n1, n2 )
F
1 (n2 , n1)
证明:
设F~F(n1,n2), 则
1 F
~
F (n2 , n1)
P{F F1 (n1, n2 )} 1
P{ 1 1 } 1
F F1 (n1, n2 )
P{ 1 1 }
F F1 (n1, n2 )
4.性质:
(1)分布可加性 若X ~ 2(n1),Y~ 2(n2 ),X,Y 独立,则X + Y ~ 2(n1+n2 ) (2)期望与方差 若X~ 2(n),则