回归分析(1)
- 格式:pps
- 大小:454.00 KB
- 文档页数:26
回归分析03:回归参数的估计(1)⽬录Chapter 3:回归参数的估计(1)3.1 最⼩⼆乘估计⽤y表⽰因变量,x_1,x_2,\cdots,x_p表⽰对y有影响的p个⾃变量。
总体回归模型:假设y和x_1,x_2,\cdots,x_p之间满⾜如下线性关系式y=\beta_0+\beta_1 x_1+\beta_2x_2+\cdots+\beta_px_p+e \ ,其中e是随机误差,将\beta_0称为回归常数,将\beta_1,\beta_1,\cdots,\beta_p称为回归系数。
总体回归函数:定量地刻画因变量的条件均值与⾃变量之间的相依关系,即{\rm E}(y|x)=\beta_0+\beta_1 x_1+\beta_2x_2+\cdots+\beta_px_p \ ,回归分析的⾸要⽬标就是估计回归函数。
假定已有因变量y和⾃变量x_1,x_2,\cdots,x_p的n组观测样本\left(x_{i1},x_{i2},\cdots,x_{ip}\right),\,i=1,2,\cdots,n。
样本回归模型:样本观测值满⾜如下线性⽅程组y_i=\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\cdots+\beta_px_{ip}+e_i \ , \quad i=1,2,\cdots,n \ .Gauss-Markov 假设:随机误差项e_i,\,i=1,2,\cdots,n满⾜如下假设:1. 零均值:{\rm E}(e_i)=0;2. 同⽅差:{\rm Var}(e_i)=\sigma^2;3. 不相关:{\rm Cov}(e_i,e_j)=0 \ , \ \ i\neq j。
如果将样本回归模型中的线性⽅程组,⽤矩阵形式表⽰为Y\xlongequal{def}\left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array}\right)=\left(\begin{array}{c} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \ \\ 1 & x_{n1} & \cdots & x_{np} \\ \end{array}\right)\left(\begin{array}{c} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{array}\right)+\left(\begin{array}{c} e_1 \\ e_2 \\ \vdots \\ e_n \end{array}\right)\xlongequal{def}X\beta+e \ ,其中X称为设计矩阵。
§1 回归分析 1.1 回归分析学习目标 1.会建立线性回归模型分析两个变量间的相关关系.2.掌握建立线性回归模型的步骤.知识点 线性回归方程 思考 (1)什么叫回归分析?(2)回归分析中,利用线性回归方程求出的函数值一定是真实值吗? 答案 (1)回归分析是对具有相关关系的两个变量进行统计分析的一种方法.(2)不一定是真实值,利用线性回归方程求的值,在很多时候是个预报值,例如,人的体重与身高存在一定的线性关系,但体重除了受身高的影响外,还受其他因素的影响,如饮食、是否喜欢运动等.梳理 (1)平均值的符号表示假设样本点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),在统计上,用x 表示一组数据x 1,x 2,…,x n 的平均值,即x =x 1+x 2+…+x n n =1n∑i =1nx i ;用y 表示一组数据y 1,y 2,…,y n 的平均值,即y =y 1+y 2+…+y n n =1n∑i =1ny i .(2)参数a ,b 的求法b =l xy l xx=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a =y -b x .(3)样本点的中心(x ,y ),回归直线过样本点的中心.1.现实生活中的两个变量要么是函数关系,要么是相关关系.( × ) 2.散点图能准确判定两个变量是否具有线性相关关系.( × ) 3.回归直线不一定过样本中的点,但一定过样本点的中心.( √)类型一 概念的理解和判断 例1 有下列说法:①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示; ③通过回归方程y =bx +a 可以估计观测变量的取值和变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验. 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 考点 回归分析题点 回归分析的概念和意义 答案 C解析 ①反映的正是最小二乘法思想,正确;②反映的是画散点图的作用,正确;③反映的是回归方程y =bx +a 的作用,正确;④不正确,在求回归方程之前必须进行相关性检验,以体现两变量的关系.跟踪训练1 下列变量关系是相关关系的是( ) ①学生的学习时间与学习成绩之间的关系; ②某家庭的收入与支出之间的关系; ③学生的身高与视力之间的关系; ④球的体积与半径之间的关系. A .①② B .①③ C .②③ D .②④考点 回归分析题点 回归分析的概念和意义 答案 A解析 对①,学习时间影响学生的学习成绩,但是学生学习的刻苦程度、学生的学习方法、教师的授课水平等其他因素也影响学生的成绩,因此学生的学习时间与学习成绩之间具有相关关系;对②,家庭收入影响支出,但支出除受收入影响外,还受其他因素影响,故它们是相关关系;对③,身高与视力之间互不影响,没有任何关系;对④,球的体积由半径决定,是一种确定性关系,故它们是函数关系. 类型二 回归分析命题角度1 求线性回归方程例2 某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,得下表数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =bx +a ; (3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.⎝⎛⎭⎪⎪⎫相关公式:b =∑i =1nx i y i -n x y ∑i =1nx 2i -n x2,a =y -b x考点 线性回归方程 题点 求线性回归方程解 (1)如图:(2)∑i =14x i y i =6×2+8×3+10×5+12×6=158,x =6+8+10+124=9,y =2+3+5+64=4,∑i =14x 2i =62+82+102+122=344,b =158-4×9×4344-4×92=1420=0.7,a =y -b x =4-0.7×9=-2.3, 故线性回归方程为y =0.7x -2.3.(3)由(2)中线性回归方程可知,当x =9时,y =0.7×9-2.3=4,预测记忆力为9的同学的判断力约为4.反思与感悟 (1)求线性回归方程的基本步骤①列出散点图,从直观上分析数据间是否存在线性相关关系. ②计算:x ,y,∑i =1nx 2i ,∑i =1n y 2i ,∑i =1nx i y i . ③代入公式求出y =bx +a 中参数b ,a 的值. ④写出线性回归方程并对实际问题作出估计.(2)需特别注意的是,只有在散点图大致呈线性时,求出的回归方程才有实际意义,否则求出的回归方程毫无意义.跟踪训练2 已知某地区4~10岁女孩各自的平均身高数据如下:求y 对x 的线性回归方程.(保留两位小数) 考点 线性回归方程 题点 求线性回归方程 解 制表b =∑i =17x i y i -7x y∑i =17x 2i -7x2=5 798-7×7×8097371-7×72≈4.82, a =y -b x =8097-4.82×7≈81.83.所以线性回归方程为y =81.83+4.82x . 命题角度2 线性回归分析与回归模型构建例3 某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x (x 取整数)(元)与日销售量y (台)之间有如下关系:(1)画出散点图,并判断y 与x 是否具有线性相关关系; (2)求日销售量y 对销售单价x 的线性回归方程;(3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润. 考点 线性回归分析 题点 回归直线方程的应用解 (1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量线性相关.(2)因为x =14×(35+40+45+50)=42.5,y =14×(56+41+28+11)=34.∑i =14x i y i =35×56+40×41+45×28+50×11=5 410.∑i =14x 2i =352+402+452+502=7 350.所以b =∑i =14x i y i -4x y∑i =14x 2i -4x2=5 410-4×42.5×347 350-4×42.52=-370125≈-3.a =y -b x =34-(-3)×42.5=161.5. 所以线性回归方程为y =161.5-3x .(3)依题意,有P =(161.5-3x )(x -30)=-3x 2+251.5x -4 845=-3⎝⎛⎭⎫x -251.562+251.5212-4 845. 所以当x =251.56≈42时,P 有最大值,约为426元.即预测当销售单价为42元时,能获得最大日销售利润.反思与感悟 解答线性回归题目的关键是首先通过散点图来分析两变量间的关系是否线性相关,然后再利用求线性回归方程的公式求解线性回归方程,在此基础上,借助线性回归方程对实际问题进行分析.跟踪训练3 一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:(1)作出散点图;(2)如果y 与x 线性相关,求出线性回归方程;(3)若在实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围? 考点 线性回归分析 题点 回归直线方程的应用解 (1)根据表中的数据画出散点图如图.(2)设线性回归方程为:y =bx +a ,并列表如下:x =12.5,y =8.25,∑i =14x 2i =660,∑i =14x i y i =438,所以b =438-4×12.5×8.25660-4×12.52≈0.73,a =8.25-0.73×12.5=-0.875, 所以y =0.73x -0.875.(3)令0.73x -0.875≤10,解得x <14.9≈15, 故机器的运转速度应控制在15转/秒内.1.某商品销售量y (件)与销售价格x (元/件)负相关,则其线性回归方程可能是( ) A .y =-10x +200 B .y =10x +200 C .y =-10x -200 D .y =10x -200考点 线性回归分析 题点 线性回归方程的应用 答案 A解析 因为y 与x 负相关,所以排除B ,D , 又因为C 项中x >0时,y <0不合题意,所以C 错.2.如图四个散点图中,适合用线性回归模型拟合其中两个变量的是()A .①②B .①③C .②③D .③④ 考点 回归分析题点 回归分析的概念和意义 答案 B解析 由图易知①③两个图中样本点在一条直线附近,因此适合用线性回归模型. 3.下表是x 和y 之间的一组数据,则y 关于x 的回归直线必过点( )A.(2,3) B .(1.5,4) C .(2.5,4) D .(2.5,5)考点 线性回归方程 题点 样本点中心的应用 答案 C解析 回归直线必过样本点中心(x ,y ),即(2.5,4).4.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量x (单位:千箱)与单位成本y (单位:元)的资料进行线性回归分析,结果如下:x =72,y =71,∑i =16x 2i=79,∑i =16x i y i =1 481,则销量每增加1 000箱,单位成本下降________元. 考点 线性回归分析 题点 线性回归方程的应用 答案 1.818 2解析 由题意知,b =1 481-6×72×7179-6×⎝⎛⎭⎫722≈-1.818 2,a =71-(-1.818 2)×72≈77.36,∴y 关与x 的线性回归方程为 y =-1.818 2x +77.36,即销量每增加1千箱,单位成本下降1.818 2元. 5.已知x ,y 之间的一组数据如下表:(1)分别计算:x ,y ,x 1y 1+x 2y 2+x 3y 3+x 4y 4,x 21+x 22+x 23+x 24;(2)已知变量x 与y 线性相关,求出线性回归方程. 考点 线性回归方程 题点 求线性回归方程解 (1)x =0+1+2+34=1.5,y =1+3+5+74=4,x 1y 1+x 2y 2+x 3y 3+x 4y 4=0×1+1×3+2×5+3×7=34,x 21+x 22+x 23+x 24=02+12+22+32=14.(2)b =34-4×1.5×414-4×1.52=2,a =y -b x =4-2×1.5=1, 故线性回归方程为y =2x +1.回归分析的步骤(1)确定研究对象,明确哪个变量是自变量,哪个变量是因变量.(2)画出确定好的因变量关于自变量的散点图,观察它们之间的关系(如是否存在线性关系等). (3)由经验确定回归方程的类型(如果呈线性关系,则选用线性回归方程y =bx +a ). (4)按一定规则估计回归方程中的参数.一、选择题1.对变量x ,y 由观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v 由观测数据(u i ,v i )(i =1,2,…,10),得散点图(2),由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关考点回归分析题点回归分析的概念和意义答案 C解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关.2.某医学科研所对人体脂肪含量与年龄这两个变量研究得到一组随机样本数据,运用Excel 软件计算得y=0.577x-0.448(x为人的年龄,y为人体脂肪含量).对年龄为37岁的人来说,下面说法正确的是()A.年龄为37岁的人体内脂肪含量为20.90%B.年龄为37岁的人体内脂肪含量约为21.01%C.年龄为37岁的人群中的大部分人的体内脂肪含量约为20.90%D.年龄为37岁的人群中的大部分人的体内脂肪含量约为31.5%考点线性回归分析题点线性回归方程的应用答案 C解析当x=37时,y=0.577×37-0.448=20.901≈20.90,由此估计,年龄为37岁的人群中的大部分人的体内脂肪含量约为20.90%.3.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关,下列结论中正确的是() A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关考点回归分析题点回归分析的概念和意义答案 A解析由正相关和负相关的定义知A正确.4.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:若x,y线性相关,线性回归方程为y=0.7x+a,估计该制药厂6月份生产甲胶囊产量约为() A.8.0万盒B.8.1万盒C.8.9万盒D.8.6万盒考点线性回归分析题点线性回归方程的应用答案 B解析回归直线一定过样本点中心.由已知数据可得x=3,y=6,代入回归方程,可得a =y-0.7x=3.9,即线性回归方程为y=0.7x+3.9.把x=6代入,可近似得y=8.1,故选B. 5.工人月工资y(单位:元)关于劳动生产率x(单位:千元)的回归方程为y=650+80x,下列说法中正确的个数是()①劳动生产率为1 000元时,工资约为730元;②劳动生产率提高1 000元,则工资提高80元;③劳动生产率提高1 000元,则工资提高730元;④当月工资为810元时,劳动生产率约为2 000元.A.1 B.2 C.3 D.4考点线性回归分析题点线性回归方程的应用答案 C解析 代入方程计算可判断①②④正确.6.某化工厂为预测某产品的回收率y ,而要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =18x i y i =1 849,则y 与x 的线性回归方程是( ) A .y =11.47+2.62x B .y =-11.47+2.62x C .y =2.62+11.47x D .y =11.47-2.62x考点 线性回归方程 题点 求线性回归方程 答案 A解析 由题中数据,得x =6.5,y =28.5,∴b =∑i =18x i y i -8x y∑i =18x 2i -8x2=1 849-8×6.5×28.5478-8×6.52=367140≈2.62,a =y -b x ≈28.5-2.62×6.5=11.47,∴y 对x 的线性回归方程是 y =2.62x +11.47,故选A.7.为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线l 1和l 2,两人计算知x 相同,y 也相同,下列正确的是( ) A .l 1与l 2一定重合 B .l 1与l 2一定平行C .l 1与l 2相交于点(x ,y )D .无法判断l 1和l 2是否相交 考点 回归直线方程 题点 样本点中心的应用 答案 C解析 因为两个人在试验中发现对变量x 的观测数据的平均值都是x ,对变量y 的观测数据的平均值都是y ,所以两组数据的样本点中心都是(x ,y ),因为回归直线经过样本点的中心,所以l 1和l 2都过(x ,y ). 二、填空题8.某校小卖部为了了解奶茶销售量y (杯)与气温x (℃)之间的关系,随机统计了某4天卖出的奶茶杯数与当天的气温,得到下表中的数据,并根据该样本数据用最小二乘法建立了线性回归方程y =-2x +60,则样本数据中污损的数据y 0应为________.考点 线性回归分析 题点 线性回归方程的应用 答案 64解析 由表中数据易知x =10,代入y =-2x +60中, 得y =40.由y 0+34+38+244=40,得y 0=64.9.调查某移动公司的三名推销员,其工作年限与年推销金额的数据如下表所示.由表中数据算出线性回归方程y =bx +a 中的b =726.若该公司第四名推销员的工作年限为6年,则估计他的年推销金额约为________万元. 考点 线性回归分析 题点 线性回归方程的应用 答案 3解析 x =6,y =3,由回归直线经过样本点中心可知,该推销员年推销金额约为3万元. 10.某人对一地区人均工资x (千元)与该地区人均消费y (千元)进行统计调查,发现y 与x 有相关关系,并得到线性回归方程y =0.66x +1.562.若该地区的人均消费水平为7.675千元,则估计该地区的人均消费额占人均工资收入的百分比约为________.(精确到0.1%) 考点 线性回归分析 题点 线性回归方程的应用 答案 82.9%解析 当y =7.675时,x ≈9.262,所以该地区的人均消费额占人均工资收入的百分比约为7.6759.262×100%≈82.9%.11.某数学老师身高为176 cm ,他爷爷、父亲和儿子的身高分别是173 cm,170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________ cm. 考点 线性回归分析 题点 线性回归方程的应用 答案 183.5解析 记从爷爷起向下各代依次为1,2,3,4,5,用变量x 表示,其中5代表孙子.各代人的身高为变量y ,则有计算知x =2.5,y =175.25.由回归系数公式得b =3.3,a =y -b x =175.25-3.3×2.5=167,∴线性回归方程为y =3.3x +167,当x =5时,y =3.3×5+167=183.5,故预测其孙子的身高为183.5 cm. 三、解答题12.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:b =∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a =y -b x .考点 线性回归方程 题点 线性回归方程的应用解 (1)由题意,n =10,∑i =110x i =80,∑i =110y i =20,∴x =8010=8,y =2010=2.又∑i =110x 2i -10x 2=720-10×82=80,∑i =110x i y i -10x y =184-10×8×2=24, 由此得b =∑i =110x i y i -10x y∑i =110x 2i -10x2=2480=0.3,a =y -b x =2-0.3×8=-0.4, 故所求线性回归方程为y =0.3 x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄约为y =0.3×7-0.4=1.7(千元). 13.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t 的回归方程y =bt +a ;(2)用所求回归方程预测该地区2019年(t =10)的人民币储蓄存款.附:回归方程y =bt +a 中,b =∑i =1nt i y i -n t y∑i =1nt 2i -n t2,a =y -b t .考点 线性回归方程 题点 求线性回归方程 解 (1)列表计算如下:此时n =5,t =1n ∑i =1n t i=155=3,y =1n ∑i =1n y i =365=7.2.又l tt =∑i =1nt 2i -nt 2=55-5×32=10,l ty =∑i =1nt i y i -n t y =120-5×3×7.2=12,从而b =l ty l tt =1210=1.2,a =y -b t =7.2-1.2×3=3.6,故所求回归方程为y =1.2t +3.6.(2)将t =10代入回归方程,可预测该地区2019年的人民币储蓄存款为y =1.2×10+3.6=15.6(千亿元). 四、探究与拓展14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求线性回归方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本) 解 (1)x =8+8.2+8.4+8.6+8.8+96=8.5,y =16(90+84+83+80+75+68)=80.∵b =-20,a =y -b x , ∴a =80+20×8.5=250, ∴线性回归方程为y =-20x +250. (2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20⎝⎛⎭⎫x -3342+361.25, ∴该产品的单价应定为334元,才使工厂获得的利润最大.。
第一章回归分析概述习题参考答案1.1 变量间的统计关系和函数关系有什么区别?(1)确定性关系或函数关系:研究的是确定现象非随机变量间的关系。
(2)统计依赖或相关关系:研究的是非确定现象随机变量间的关系。
1.2 相关分析和回归分析的区别与联系?相关分析和回归分析的联系是:它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现;二者的区别是作为相互关系分析的方法,相关分析是通过提供一个相关系数来考察两变量间的联系程度,而回归分析则是重在建立两变量间的函数关系式,因此通常可以先考察相关系数的显著型,如果显著则可以进一步考虑建立变量间的回归方程。
此外,相关分析和回归分析又各有一些具体方法用于处理不同的情况,如相关分析还包括等级相关、质量相关和品质相关,回归分析还包括非线性回归等。
(其余区别在课本第四页最上面那段)1.3 线性回归模型中随机误差项ε的意义是什么?引入随机误差 使得变量之间的关系描述为一个随机方程,因而我们可以借助数学方法研究自变量和因变量之间的关系。
由于客观经济现象是错综复杂的,随机误差项可以概述表示由于人们的认识以及其他客观原因的局限而没有考虑到的种种偶然因素。
引入随机项扰动的理由如下:第一,表示被解释变量Y与解释变量X的不确定性关系第二,模型不可能包含所有变量,次要变量要省略;第三,确定模型数学形式肯定会有误差;第四,样本数据会有测量误差;第五,一些随机因素无法选入模型。
1.4 线性回归方程的基本假设是什么?假设1、解释变量X(x1 ,x2,…,xp)是确定性变量,不是随机变量;假设2、随机误差项ε具有零均值、等方差和序列不相关性:E(εi)=0 i=1,2, …Var (εi)=σ2 i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3 ε服从零均值同方差、零协方差的正态分布。
εi ~N(0, σ2 ) i=1,2, …,n假设4、样本容量的个数多于解释变量的个数,即:n>p假设5、随机误差项ε与解释变量X之间不相关:Cov(Xi, εi)=0 i=1,2, …,n(在课本第7页到第8页)1.6收集整理数据包括哪些内容?在课本第10到12页1.7构造回归理论模型的基本根据是什么?(1)散点图(2)实际问题背景的理论及方法建模技术原理(3)经验公式1.8至于回归模型建立之后为什么要检验?是因为我们不明确这个模型是否真正揭示了被解释变量与解释变量之间的关系,因而用此模型区做预测、控制和分析时不够慎重的。
应用回归分析试题(一)一、选择题1. 两个变量与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( D )A. 2R 越小,残差平方和越小B. 2R 越大,残差平方和越大C. 2R 与残差平方和无关D. 2R 越小,残差平方和越大 2.下面给出了4个残差图,哪个图形表示误差序列是自相关的(B )(A ) (B)(C ) (D )3.在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x ,i y ),1,2i ,…,n ;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图 如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( D )A .①②⑤③④B .③②④⑤①C .②④③①⑤D .②⑤④③①4.下列说法中正确的是(B )A.任何两个变量都具有相关关系B.人的知识与其年龄具有相关关系 C .散点图中的各点是分散的没有规律 D .根据散点图求得的回归直线方程都是有意义的12345678xey5. 下面的各图中,散点图与相关系数r 不符合的是(B )二、填空题1. OLSE 估计量的性质线性、无偏、最小方差。
2. 学习回归分析的目的是对实际问题进行预测和控制。
3. 检验统计量t 值与P 值的关系是P(|t |>|t 值|)=P 值,P 值越小,|t 值| 越大 ,回归方程越显著。
4. 在一元线性回归中,SST 自由度为n-1, SSE 自由度为n-2, SSR 自由度为1。
5. 在多元线性回归中,样本决定系数2R = 1SSR SSESSTSST =-。
三、叙述题1. 叙述一元线性回归模型中回归方程系数的求解过程及结果(OLSE 法)答案:定义离差平方和2^1)()(i ni i y y Q ∑=-=β最小二乘思想找出参数10,ββ的估计值^1^0,ββ。
使得离差平方和最小,使^1^0,ββ满足下述条件:∑∑==--=-=ni i i ni i i x y x y Q 1210,121^^010)(min ),(),(1ββββββββ根据微分中值定理可得:0)(2|0)(2|^11^01^11^11^00^00=---=∂∂=---=∂∂∑∑====i i n i i i n i i x x y Qx y Qββββββββββ求解正规方程组得到:⎪⎪⎪⎩⎪⎪⎪⎨⎧---=-=∑∑=-=----n i i n i i i x x y y x x xy 121^11^^0)())((βββ 令 --=-=--==--=--=-=-=∑∑∑∑y x n y x y y x x L xn x x x L ni i i i ni i xy ni ini i xx 1121212)()()(则一元线性回归模型中回归方程系数可表示为2. 叙述多元线性回归模型的基本假设 答案:假设1.解释变量12,,,K X X X 是非随机的 假设2.E (i ε)=0;假设3.var(iε)=2σ,i =1,2,……ncov(,i j εε)=0,i j ≠, ,i j =1,2,……n;假设4.解释变量12,,,K X X X 线性无关;假设5.2(0,)iN εσ3. 回归模型中随机误差项ε的意义是什么?答案:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与12,,px x x 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。