一元线性回归模型与多元线性回归模型对比
- 格式:doc
- 大小:399.50 KB
- 文档页数:5
线性统计模型知识点总结一、线性回归模型1. 线性回归模型的基本思想线性回归模型是一种用于建立自变量和因变量之间线性关系的统计模型。
它的基本思想是假设自变量与因变量之间存在线性关系,通过对数据进行拟合和预测,以找到最佳拟合直线来描述这种关系。
2. 线性回归模型的假设线性回归模型有一些假设条件,包括:自变量与因变量之间存在线性关系、误差项服从正态分布、误差项的方差是常数、自变量之间不存在多重共线性等。
3. 线性回归模型的公式线性回归模型可以用如下的数学公式来表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y 是因变量,X是自变量,β是模型的系数,ε是误差项。
4. 线性回归模型的参数估计线性回归模型的参数估计通常使用最小二乘法来进行。
最小二乘法的目标是通过最小化残差平方和来寻找到最佳的模型系数。
5. 线性回归模型的模型评估线性回归模型的好坏可以通过很多指标来进行评价,如R-squared(R^2)、调整后的R-squared、残差标准差、F统计量等。
6. 线性回归模型的应用线性回归模型广泛应用于经济学、金融学、市场营销、社会科学等领域,用以解释变量之间的关系并进行预测。
二、一般线性模型(GLM)1. 一般线性模型的基本概念一般线性模型是一种用于探索因变量与自变量之间关系的统计模型。
它是线性回归模型的一种推广形式,可以处理更为复杂的数据情况。
2. 一般线性模型的模型构建一般线性模型与线性回归模型相似,只是在因变量和自变量之间的联系上,进行了更为灵活的变化。
除了线性模型,一般线性模型还可以包括对数线性模型、逻辑斯蒂回归模型等。
3. 一般线性模型的假设一般线性模型与线性回归模型一样,也有一些假设条件需要满足,如误差项的正态分布、误差项方差的齐性等。
4. 一般线性模型的模型评估一般线性模型的模型评估通常涉及到对应的似然函数、AIC、BIC、残差分析等指标。
5. 一般线性模型的应用一般线性模型可以应用于各种不同的领域,包括医学、生物学、社会科学等,用以研究因变量与自变量之间的关系。
线性回归模型的经典假定及检验、修正一、线性回归模型的基本假定1、一元线性回归模型一元线性回归模型是最简单的计量经济学模型,在模型中只有一个解释变量,其一般形式是Y =β0+β1X 1+μ其中,Y 为被解释变量,X 为解释变量,β0与β1为待估参数,μ为随机干扰项。
回归分析的主要目的是要通过样本回归函数(模型)尽可能准确地估计总体回归函数(模型)。
为保证函数估计量具有良好的性质,通常对模型提出若干基本假设。
假设1:回归模型是正确设定的。
模型的正确设定主要包括两个方面的内容:(1)模型选择了正确的变量,即未遗漏重要变量,也不含无关变量;(2)模型选择了正确的函数形式,即当被解释变量与解释变量间呈现某种函数形式时,我们所设定的总体回归方程恰为该函数形式。
假设2:解释变量X 是确定性变量,而不是随机变量,在重复抽样中取固定值。
这里假定解释变量为非随机的,可以简化对参数估计性质的讨论。
假设3:解释变量X 在所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X 的样本方差趋于一个非零的有限常数,即∑(X i −X ̅)2n i=1n→Q,n →∞ 在以因果关系为基础的回归分析中,往往就是通过解释变量X 的变化来解释被解释变量Y 的变化的,因此,解释变量X 要有足够的变异性。
对其样本方差的极限为非零有限常数的假设,旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生伪回归问题。
假设4:随机误差项μ具有给定X 条件下的零均值、同方差以及无序列相关性,即E(μi|X i)=0Var(μi|X i)=σ2Cov(μi,μj|X i,X j)=0, i≠j随机误差项μ的条件零均值假设意味着μ的期望不依赖于X的变化而变化,且总为常数零。
该假设表明μ与X不存在任何形式的相关性,因此该假设成立时也往往称X为外生性解释变量随机误差项μ的条件同方差假设意味着μ的方差不依赖于X的变化而变化,且总为常数σ2。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。
2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。
但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。
通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。
3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。
Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。
Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。
Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。
(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。
该值越大说明拟合得越好。
而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。
5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。
参数估计量的性质线性性、无偏性、有效性线性性、无偏性、有效性参数估计量的概率分布),(~ˆ), (~ˆ222002211σββσββ∑∑∑iiix n X N x N ---样本容量问题 ----样本容量n 必须不少于模型中解释变量的个数(包括常数项),即1+≥k n 才能得到参数估计值,8-≥k n 时t 分布才比较稳定,能够进行变量的显著性检验,一般认为30≥n 活着至少()13+≥k n 时才能满足模型估计要求。
如果样本量过小,则只依靠样本信息是无法完成估计的,需要用其他方法去估计。
统计检验一元线性回归模型 多元线性回归模型拟合优度检验总离差平方和的分解 TSS=ESS+RSSTSSESS R =2,[]1,02∈R 越接近于1,拟合优度越高。
总离差平方和的分解 TSS=ESS+RSSTSSRSSTSS ESS R -==12,(即总平方和中回归平方和的比例) []1,02∈R 对于同一个模型,2R 越接近于1,拟合优度越高。
)1/()1(12----=n TSS k n RSS R (调整的思路是残差平方和RSS 和总平方和TSS各自除以它们的自由度)为什么要对2R 进行调整?解释变量个数越多,它们对Y 所能解释的部分越大(即回归平方和部分越大),残差平方和部分越小,2R 越高,由增加解释变量引起的2R 的增大与拟合好坏无关,因此在多元回归模型之间比较拟合优度, 2R 就不是一个合适的指标,必须加以调整。
方程总体显著性检验------目的:对模型中被解释变量与解释变量之间的线性关系在总体上是否成立做出判断。
原假设备择假设:统计量的构造:判断步骤:①计算F 统计量的值②给定显著性水平,查F 分布的临界值表获得)③比较F与的值,若,拒绝原假设,认为原方程总体线性关系在的置信水平下显著。
若,接受原假设,不能认为原方程总体线性关系在的置信水平下显著。
变量的显著性检验目的:对模型中被解释变量对每一个解释变量之间的线性关系是否成立作出判断,或者说考察所选择的解释变量对被解释变量是否有显著的线性影响。
第二部分:多元线性回归模型一、内容提要本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。
主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。
只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。
本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。
与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。
本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。
这里需要注意各回归参数的具体经济含义。
本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。
参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。
检验都是以F检验为主要检验工具,以受约束模型与无约束模型是否有显著差异为检验基点。
参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。
它们仍以估计无约束模型与受约束模型为基础,但以最大似然χ分布为检验统计原理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的2量的分布特征。
非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。
二、典型例题分析例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为36.0.+=-10+094medufedu.0sibsedu210131.0R2=0.214式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年数。
一、单选题1、多元线性回归模型和一元线性回归模型相比,显著不同的基本假设是?()A.随机误差项具有同方差B.解释变量之间互不相关C.随机误差项具有零均值D.随机误差项无序列相关性正确答案:B2、用矩阵表示多元线性回归模型OLS估计的正规方程组,X的第1列或第1行的元素是什么?()A.1B.变量观测值C.0D.取值不能确定的常数正确答案:A3、多元线性回归模型中,发现各参数估计量的t值都不显著,但模型的拟合优度很大, F值很显著,这说明模型存在()。
A.自相关B.设定偏误C.异方差D.多重共线性正确答案:D4、如果把常数项看成是一个虚变量的系数,该虚变量的样本观测值为()。
A.取值不能确定的常数B.1C.随样本而变的变量D.0正确答案:B5、从统计检验的角度,样本容量要大于多少,Z检验才能应用?()A.40B.20C.30D.10正确答案:C二、多选题1、在一定程度上表征多元线性回归模型整体拟合优度的指标是哪些?()A.SCB.调整可决系数C.AICD.t正确答案:A、B、C2、多元线性回归模型的基本检验包括哪些?()A.方程整体检验:可决系数、调整可决系数、F检验B.预测检验:给定解释变量,被解释变量的观测值,与被解释变量的真实值进行对比C.单参数检验:系数T检验D.经济学含义检验:系数正负是否符合经济逻辑以及经济现实正确答案:A、B、C、D3、估计多元线性回归参数的方法有()。
A.普通最小二乘估计OLSB.最大似然估计C.矩估计GMMD.最大方差法正确答案:A、B、C4、下列说法不正确的是()。
A.RSS=TSS x ESSB.RSS=TSS/ESSC.RSS=TSS - ESSD.RSS=TSS + ESS正确答案:A、B、D5、运用F统计量检验约束回归,下列不正确的说法是()。
A.可以检查一个解释变量的作用是否显著B.可以检查一批解释变量的作用是否显著C.可以判断一个回归参数是否足够大D.可以检查一个多元线性回归方程是否有经济意义正确答案:A、C、D三、判断题1、多元线性回归模型中某个解释变量系数的含义是其他解释变量保持不变,该解释变量变化1个单位,被解释变量的条件均值变化的数量。
多元线性回归模型的检验1多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用;1、拟合程度的测定;与一元线性回归中可决系数r2相对应,多元线性回归中也有多重可决系数r2,它是在因变量的总变化中,由回归方程解释的变动回归平方和所占的比重,R2越大,回归方各对样本数据点拟合的程度越强,所有自变量与因变量的关系越密切;计算公式为:其中,2.估计标准误差估计标准误差,即因变量y的实际值与回归方程求出的估计值之间的标准误差,估计标准误差越小,回归方程拟合程度越程;其中,k为多元线性回归方程中的自变量的个数;3.回归方程的显著性检验回归方程的显著性检验,即检验整个回归方程的显著性,或者说评价所有自变量与因变量的线性关系是否密切;能常采用F检验,F统计量的计算公式为:根据给定的显著水平a,自由度k,n-k-1查F分布表,得到相应的临界值Fa,若F > Fa,则回归方程具有显著意义,回归效果显著;F < Fa,则回归方程无显著意义,回归效果不显著;4.回归系数的显著性检验在一元线性回归中,回归系数显著性检验t检验与回归方程的显著性检验F检验是等价的,但在多元线性回归中,这个等价不成立;t检验是分别检验回归模型中各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素;检验时先计算统计量ti;然后根据给定的显著水平a,自由度n-k-1查t分布表,得临界值ta或ta / 2,t > t − a或ta / 2,则回归系数bi与0有显著关异,反之,则与0无显著差异;统计量t的计算公式为:其中,Cij是多元线性回归方程中求解回归系数矩阵的逆矩阵x'x − 1的主对角线上的第j 个元素;对二元线性回归而言,可用下列公式计算:其中,5.多重共线性判别若某个回归系数的t检验通不过,可能是这个系数相对应的自变量对因变量的影平不显著所致,此时,应从回归模型中剔除这个自变量,重新建立更为简单的回归模型或更换自变量;也可能是自变量之间有共线性所致,此时应设法降低共线性的影响;多重共线性是指在多元线性回归方程中,自变量之彰有较强的线性关系,这种关系若超过了因变量与自变量的线性关系,则回归模型的稳定性受到破坏,回归系数估计不准确;需要指出的是,在多元回归模型中,多重共线性的难以避免的,只要多重共线性不太严重就行了;判别多元线性回归方程是否存在严惩的多重共线性,可分别计算每两个自变量之间的可决系数r2,若r2 > R2或接近于R2,则应设法降低多重线性的影响;亦可计算自变量间的相关系数矩阵的特征值的条件数k = λ1 / λpλ1为最大特征值,λp为最小特征值,k<100,则不存在多重点共线性;若100≤k≤1000,则自变量间存在较强的多重共线性,若k>1000,则自变量间存在严重的多重共线性;降低多重共线性的办法主要是转换自变量的取值,如变绝对数为相对数或平均数,或者更换其他的自变量;检验当回归模型是根据动态数据建立的,则误差项e也是一个时间序列,若误差序列诸项之间相互独立,则误差序列各项之间没有相关关系,若误差序列之间存在密切的相关关系,则建立的回归模型就不能表述自变量与因变量之间的真实变动关系;检验就是误差序列的自相关检验;检验的方法与一元线性回归相同;。
第四章 多元线性回归模型在一元线性回归模型中,解释变量只有一个。
但在实际问题中,影响因变量的变量可能不止一个,比如根据经济学理论,人们对某种商品的需求不仅受该商品市场价格的影响,而且受其它商品价格以及人们可支配收入水平的制约;影响劳动力劳动供给意愿(用劳动参与率度量)的因素不仅包括经济形势(用失业率度量),而且包括劳动实际工资;根据凯恩斯的流动性偏好理论,影响人们货币需求的因素不仅包括人们的收入水平,而且包括利率水平等。
当解释变量的个数由一个扩展到两个或两个以上时,一元线性回归模型就扩展为多元线性回归模型。
本章在理论分析中以二元线性回归模型为例进行。
一、预备知识(一)相关概念对于一个三变量总体,若由基础理论,变量21,x x 和变量y 之间存在因果关系,或21,x x 的变异可用来解释y 的变异。
为检验变量21,x x 和变量y 之间因果关系是否存在、度量变量21,x x 对变量y 影响的强弱与显著性、以及利用解释变量21,x x 去预测因变量y ,引入多元回归分析这一工具。
将给定i i x x 21,条件下i y 的均值i i i i i x x x x y E 2211021),|(βββ++= (4.1) 定义为总体回归函数(Population Regression Function,PRF )。
定义),|(21i i i i x x y E y -为误差项(error term ),记为i μ,即),|(21i i i i i x x y E y -=μ,这样i i i i i x x y E y μ+=),|(21,或i i i i x x y μβββ+++=22110 (4.2)(4.2)式称为总体回归模型或者随机总体回归函数。
其中,21,x x 称为解释变量(explanatory variable )或自变量(independent variable );y 称为被解释变量(explained variable )或因变量(dependent variable );误差项μ解释了因变量的变动中不能完全被自变量所解释的部分。
第三章 多元线性回归模型一、名词解释1、多元线性回归模型2、调整的决定系数2R3、偏回归系数4、正规方程组5、方程显著性检验二、单项选择题1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性检验(F 检验)时构造的F 统计量为 ( )A 、(1)ESS k F RSS n k =-- B 、(1)()ESS k F RSS n k -=-C 、ESS F RSS =D 、1RSSF TSS=-3、已知二元线性回归模型估计的残差平方和为2800ie=∑,估计用样本容量为23n =,则随机误差项t μ的方差的OLS 估计值为 ( )A 、33.33B 、 40C 、 38.09D 、36.364、在多元回归中,调整后的决定系数2R 与决定系数2R 的关系为 ( )A 、22R R <B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定5、下面说法正确的有 ( )A 、时间序列数据和横截面数据没有差异B 、对回归模型的总体显著性检验没有必要C 、总体回归方程与样本回归方程是有区别的D 、决定系数2R 不可以用于衡量拟合优度6、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞7、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。
ˆβ是 ( )A 、随机向量B 、非随机向量C 、确定性向量D 、常量8、下面哪一表述是正确的 ( )A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系9、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 ( )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --10、下列说法中正确的是 ( )A 、如果模型的R 2很高,我们可以认为此模型的质量较好B 、如果模型的R 2很低,我们可以认为此模型的质量较差C 、如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 、如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量三、多项选择题1、残差平方和是指 ( )A 、随机因素影响所引起的被解释变量的变差B 、解释变量变动所引起的被解释变量的变差C 、被解释变量的变差中,回归方程不能作出解释的部分D 、被解释变量的总离差平方和回归平方之差E 、被解释变量的实际值与拟合值的离差平方和2、回归平方和是指 ( )A 、被解释变量的观测值i Y 与其均值Y 的离差平方和B 、被解释变量的回归值ˆiY 与其均值Y 的离差平方和C 、被解释变量的总体平方和2i Y ∑与残差平方和2i e ∑之差D 、解释变量变动所引起的被解释变量的离差的大小E 、随机因素影响所引起的被解释变量的离差大小3、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==4、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所用的F 统计量可以表示为 ( )A 、22ˆ()/(1)/i i iY Y n k e k---∑∑ B 、22ˆ()//(1)iiiY Y k e n k ---∑∑C 、22/(1)/(1)R kR n k --- D 、22(1)/(1)/R n k R k ---E 、22/(1)(1)/R n k R k---5、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、判断题1、满足基本假设条件下,样本容量略大于解释变量个数时,可以得到各参数的唯一确定的估计值,但参数估计结果的可靠性得不到保证 ( )2、在多元线性回归中,t 检验和F 检验缺一不可。
一元线性回归分析和多元线性回归分析一元线性回归分析1.简单介绍当只有一个自变量时,称为一元回归分析(研究因变量y 和自变量x 之间的相关关系);当自变量有两个或多个时,则称为多元回归分析(研究因变量y 和自变量1x ,2x ,…,n x 之间的相关关系)。
如果回归分析所得到的回归方程关于未知参数是线性的,则称为线性回归分析;否则,称为非线性回归分析。
在实际预测中,某些非线性关系也可以通过一定形式的变换转化为线性关系,所以,线性回归分析法成为最基本的、应用最广的方法。
这里讨论线性回归分析法。
2.回归分析法的基本步骤回归分析法的基本步骤如下: (1) 搜集数据。
根据研究课题的要求,系统搜集研究对象有关特征量的大量历史数据。
由于回归分析是建立在大量的数据基础之上的定量分析方法,历史数据的数量及其准确性都直接影响到回归分析的结果。
(2) 设定回归方程。
以大量的历史数据为基础,分析其间的关系,根据自变量与因变量之间所表现出来的规律,选择适当的数学模型,设定回归方程。
设定回归方程是回归分析法的关键,选择最优模型进行回归方程的设定是运用回归分析法进行预测的基础。
(3) 确定回归系数。
将已知数据代入设定的回归方程,并用最小二乘法原则计算出回归系数,确定回归方程。
这一步的工作量较大。
(4) 进行相关性检验。
相关性检验是指对已确定的回归方程能够代表自变量与因变量之间相关关系的可靠性进行检验。
一般有R 检验、t 检验和F 检验三种方法。
(5) 进行预测,并确定置信区间。
通过相关性检验后,我们就可以利用已确定的回归方程进行预测。
因为回归方程本质上是对实际数据的一种近似描述,所以在进行单点预测的同时,我们也需要给出该单点预测值的置信区间,使预测结果更加完善。
3. 一元线性回归分析的数学模型用一元线性回归方程来描述i x 和i y 之间的关系,即i i i x a a y ∆++=10 (i =1,2,…,n )(2-1)式中,i x 和i y 分别是自变量x 和因变量y 的第i 观测值,0a 和1a 是回归系数,n 是观测点的个数,i ∆为对应于y 的第i 观测值i y 的随机误差。
一元线性回归与多元线性回归的比较与选择在统计学和机器学习领域,线性回归是一种常见且常用的预测分析方法。
它用于建立输入变量(自变量)和输出变量(因变量)之间的线性关系模型,用于预测和解释变量之间的关系。
在线性回归中,一元线性回归和多元线性回归是两种常见的模型。
本文将比较一元线性回归和多元线性回归,并介绍在不同情况下选择合适的模型的方法。
一元线性回归适用于只有一个自变量的情况。
它建立了一个简便的线性关系模型,通过最小化实际值和预测值之间的误差来拟合数据。
一元线性回归的模型可以表示为Y = β₀ + β₁X + ε,其中Y是因变量,X是自变量,β₀和β₁是回归系数,ε是误差项。
一元线性回归方法简单易用,计算速度快,而且可以提供对自变量的解释性。
然而,当存在多个自变量时,一元线性回归无法捕捉到这些自变量对因变量的共同影响。
与之相比,多元线性回归适用于有多个自变量的情况。
它建立了一个多维的线性关系模型,通过最小化实际值和预测值之间的误差来拟合数据。
多元线性回归的模型可以表示为Y = β₀ + β₁X₁ + β₂X₂ + ... + βₚXₚ + ε,其中Y是因变量,X₁、X₂、...、Xₚ是自变量,β₀、β₁、β₂、...、βₚ是回归系数,ε是误差项。
相较于一元线性回归,多元线性回归可以同时考虑多个自变量对因变量的影响,能够更准确地建模和预测。
在选择一元线性回归或多元线性回归模型时,需要考虑以下几个因素。
需要注意因变量和自变量之间是否存在线性关系。
如果变量之间存在非线性关系,使用线性回归模型可能会导致模型不准确。
需要评估自变量之间是否存在共线性。
共线性指的是两个或多个自变量之间存在高度相关性,这会导致回归系数的估计不准确。
如果存在共线性,应该考虑使用多元线性回归来解决这个问题。
还需要考虑自变量的数量。
如果自变量数量较少,且它们之间相互独立,一元线性回归模型可能更适用。
然而,如果自变量数量较多,或者它们之间存在复杂的相互关系,多元线性回归模型更为适合。
计量经济学复习笔记(四):多元线性回归⼀元线性回归的解释变量只有⼀个,但是实际的模型往往没有这么简单,影响⼀个变量的因素可能有成百上千个。
我们会希望线性回归模型中能够考虑到这些所有的因素,⾃然就不能再⽤⼀元线性回归,⽽应该将其升级为多元线性回归。
但是,有了⼀元线性回归的基础,讨论多元线性回归可以说是轻⽽易举。
另外我们没必要分别讨论⼆元、三元等具体个数变量的回归问题,因为在线性代数的帮助下,我们能够统⼀讨论对任何解释变量个数的回归问题。
1、多元线性回归模型的系数求解多元线性回归模型是⽤k 个解释变量X 1,⋯,X k 对被解释变量Y 进⾏线性拟合的模型,每⼀个解释变量X i 之前有⼀个回归系数βi ,同时还应具有常数项β0,可以视为与常数X 0=1相乘,所以多元线性回归模型为Y =β0X 0+β1X 1+β2X 2+⋯+βk X k +µ,这⾥的µ依然是随机误差项。
从线性回归模型中抽取n 个样本构成n 个观测,排列起来就是Y 1=β0X 10+β1X 11+β2X 12+⋯+βk X 1k +µ1,Y 2=β0X 20+β1X 21+β2X 22+⋯+βk X 2k +µ2,⋮Y n =β0X n 0+β1X n 1+β2X n 2+⋯+βk X nk +µn .其中X 10=X 20=⋯=X n 0=1。
⼤型⽅程组我们会使⽤矩阵表⽰,所以引⼊如下的矩阵记号。
Y =Y 1Y 2⋮Y n,β=β0β1β2⋮βk,µ=µ1µ2⋮µn.X =X 10X 11X 12⋯X 1k X 20X 21X 22⋯X 2k ⋮⋮⋮⋮X n 0X n 1X n 2⋯X nk.在这些矩阵表⽰中注意⼏点:⾸先,Y 和µ在矩阵表⽰式中都是n 维列向量,与样本容量等长,在线性回归模型中Y ,µ是随机变量,⽽在矩阵表⽰中它们是随机向量,尽管我们不在表⽰形式上加以区分,但我们应该根据上下⽂明确它们到底是什么意义;β是k +1维列向量,其长度与Y ,µ没有关系,这是因为β是依赖于变量个数的,并且加上了对应于常数项的系数(截距项)β0;最后,X 是数据矩阵,且第⼀列都是1。
参数估计量的性质
线性性、无偏性、有效性
线性性、无偏性、有效性
参数估计量的概率分布
)
,
(~ˆ), (~ˆ22
2002211σββσββ∑∑∑i
i
i
x n X N x N ---
样本容量问题 ----
样本容量n 必须不少于模型中解释变量的个数(包括常数项),
即1+≥k n 才能得到参数估计值,8-≥k n 时t 分布才比较稳定,能够进行变量的显著性检验,一般认为30≥n 活着至少
()13+≥k n 时才能满足模型估计要求。
如果样本量过小,则只
依靠样本信息就是无法完成估计的,需要用其她方法去估计。
统计检验
一元线性回归模型 多元线性回归模型
拟合优度检验
总离差平方与的分解 TSS=ESS+RSS
TSS
ESS R =
2,[]1,02
∈R 越接近于1,拟合优度越高。
总离差平方与的分解 TSS=ESS+RSS
TSS
RSS
TSS ESS R -==
12,(即总平方与中回归平方与的比例) []1,02∈R 对于同一个模型,2R 越接近于1,拟合优度越高。
)
1/()
1(12----
=n TSS k n RSS R (调整的思路就是残差平方与
RSS 与总平方与
TSS 各自除以它们的自由度)
为什么要对2
R 进行调整?解释变量个数越多,它们对
Y 所能解释的部分越
大(即回归平方与部分越大),残差平方与部分越小,2R 越高,由增加解释变量引起的
2R 的增大与拟合好坏无关,因此在多元回归模型之间比较拟合优度, 2R 就不就是一
个合适的指标,必须加以调整。
方程总体显著性检验
------
目的:对模型中被解释变量与解释变量之间的线性关系在总体上就是否成立做出判断。
原假设
备择假设:
统计量的构造:
判断步骤:①计算F 统计量的值
②给定显著性水平,查F 分布的临界值表获得
)
③比较F与的值,
若,拒绝原假设,认为原方程总体线性关系在的置信水平下显著。
若,接受原假设,不能认为原方程总体线性关系在的置信水平下显著。
变量的显著性检验目的:对模型中被解释变量对每一个解释变量之间的线性关系就是否成立作出判断,或者说考察所选择的解释变量对被解释变量就是否有显著的线性影响。
针对某解释变量
,
原假设:备择假设:
最常用的检验方法: t检验
构造统计量:
判断步骤:①计算t统计量的值
②给定显著性水平,查t分布的临界值表获得
)
③比较t值与的值,
若,拒绝原假设,认为变量在的置信水平下通过显著性检验(或者说,在的显著性水平下通过检验),认为解释变量对被解释变量Y有显著线性影响。
若,接受原假设,在显著性水平下没有足够证据表明对Y有显著线性影响。
参数的置信区间目的:考察一次抽样中样本参数的估价值与总体参数的真实值的接近程度。
思路:构造一个以样本参数的估计值为中心的区间,考察它以多大的概率包含总体参数的真实值。
方法:①预先选择一个概率,使得区间包含参数真值
②计算其中的(),从而求出置信度下置信区
间:
掌握概念:置信区间置信度显著性水平
实际应用中,我们希望置信度越高越好,置信区间越小越好(说明估计精度越高)。
如何缩小置信区间?
(1)增大样本容量n(以减小,并减小参数估计值的样本方差)
(2)提高模型的拟合优度(以减小残差平方与,从而减小)
(3)提高样本观测值的分散度(样本值越分散,越小,越小)。