统计分布
- 格式:ppt
- 大小:1.32 MB
- 文档页数:5
数理统计分布类型数理统计是数学和统计学的交叉学科,研究收集、整理、分析和解释数据的方法和原则。
其中,分布类型是数理统计的重要概念之一。
统计分布是指一组数据按照一定规律的分布情况,根据数据分布的形状和特点,可以将统计分布分为不同的类型。
常见的数理统计分布类型有正态分布、均匀分布、伯努利分布、二项分布、泊松分布、几何分布、指数分布、正态分布、t分布和F分布等。
以下将逐一介绍这些常见的分布类型。
1.正态分布:正态分布(或高斯分布)是数理统计中最常见的一种分布类型。
正态分布的密度函数呈钟形曲线,对称且具有峰值,其分布的均值、方差决定了曲线的位置和形状。
正态分布在自然界和社会现象中广泛存在,如身高、体重、考试成绩等。
2.均匀分布:均匀分布是指数据在给定区间内的分布是均匀的,即每个数据点出现的概率相等。
均匀分布的密度函数是一个常数,对应的分布函数是线性的。
均匀分布常用于模拟随机数产生、建立实验设计等领域。
3.伯努利分布:伯努利分布是一种离散型的分布,只有两个可能的取值(例如0和1),其中一个取值的概率为p,另一个取值的概率为1-p。
伯努利分布常用于描述二项式试验中的成功和失败的概率。
4.二项分布:二项分布是由多次独立的伯努利试验组成的概率分布,其中每个试验只有两个可能的结果(例如成功和失败)。
二项分布可以用于描述多次独立重复试验中成功次数的分布情况。
5.泊松分布:泊松分布是一种用于描述单位时间或空间内事件发生次数的概率分布。
泊松分布假设事件以恒定的平均速率独立地发生,其参数λ表示单位时间或空间内事件的平均发生次数。
6.几何分布:几何分布是一种描述第一次成功发生需要的独立试验次数的概率分布。
每次试验只有两个可能的结果(例如成功和失败),成功的概率为p,几何分布描述了第一次成功发生之前需要进行的试验次数的分布情况。
7.指数分布:指数分布是描述时间间隔或空间间隔的分布,它的特点是具有无记忆性。
指数分布可以用于描述等待时间、服务时间、设备故障时间等。
统计学三大分布的应用
统计学三大分布是指正态分布、t分布和卡方分布。
这些分布在统计学中应用广泛,下面将分别介绍其应用。
正态分布是自然界中最常见的分布之一,常用于描述连续性变量。
例如,身高、体重、智商等连续性变量都可以用正态分布来描述。
在假设检验、置信区间估计和回归分析等统计学方法中,正态分布也是一个非常重要的理论基础。
t分布是由威廉·塞德威克·高斯特(W.S.Gosset)于1908年提
出的,用来解决小样本量的问题。
t分布的形状与正态分布非常接近,但是在样本量较小的情况下,t分布的尾部更宽一些,因此在小样本量的情况下,使用t分布进行假设检验和置信区间估计更为合适。
卡方分布是概率论中一个重要的分布,通常应用于描述计数数据。
例如,在卡方检验中,卡方分布常常用来处理分类数据,如调查中统计“喜欢”或“不喜欢”某种产品或服务的人数。
卡方分布也常用于多项式回归和逻辑回归等模型中。
综上所述,正态分布、t分布和卡方分布在统计学中应用非常广泛,是统计学的重要组成部分。
对于从事统计学研究或相关领域的人员来说,深入理解和熟练运用这些分布是非常重要的。
- 1 -。
统计师考试《初级基础》考点:统计分布统计师考试《初级基础》考点:统计分布按照《关于印发《统计专业技术资格考试暂行规定》及其实施办法的通知》(国统字[1995]46号)文件有关规定,从1995年起统计专业技术资格实行全国统一考试制度。
店铺整理了相关的内容,欢迎欣赏与借鉴。
一、统计分布的概念1、概念:(识记)统计分布又称次数分布,也称分配数列。
是在分组基础上,将总体的所有单位按组进行归并排列,形成总体中各个单位在各组间的分布。
统计分布的实质是把总体的全部单位按某标志所分得组进行分配所形成的数列。
2、统计分布的2要素:(1)总体按某标志所分的组。
(2)各组的单位数(次数)。
3、统计分布的种类:(识记)(1)对称分布:集中位置在中间,左右两侧频数大体对称。
(2)偏态分布:集中位置偏向一侧,左右两侧频数不对称。
4、(识记)分配数列分为品质分配数列(按品质标志分组)和变量分配数列。
变量数列分为单项式数列和组距式数列。
组距式数列又分为等距式分组和不等距式分组,还可以分为开口式分组和闭口式分组。
对离散型变量数列,如果变量值数目不多,则可编成单项式;如果变量值数目很多,则应编成组距式。
连续型变量数列一般是组距式的。
二、考点练习题【2011 判断】对于变量值数目很少的离散变量数列应以组距式而非单项式进行编制。
( )【答案】×【例单选】分配数列包含两个组成要素,即( )。
A、分组标志和组距B、分组和次数C、分组标志和次数D、分组和表式【答案】B三、组距式变量数列编制的基本概念(一)组距和组数(识记)组距:是指每个组变量值中最大值与最小值之差。
即组距=组上线-组下限。
组上限:每组变量值中的最大值。
组下限:每组变量值中的最小值。
(识记)组数:组距式变量数列编制过程中分组个数。
组数与组距成反比关系。
同一变量数列中,组数越多,则组距越小;反之,组数越小,则组距越大。
【2011 单选】组距的正确计算公式是( )。
A、组距=上限-下限B、组距=下限-上限C、组距=(上限-下限)∕2D、组距=(上限+下限)∕2【答案】A【2012 判断】在同一变量数列中,组数越多,则组距越大;反之,组数越少,则组距越小,两者成正比关系。
统计学三大分布的应用统计学是一门重要的学科,它通过收集、整理和分析数据来揭示事物之间的潜在规律和关系。
在统计学中,分布是一种揭示数据特征的重要工具。
在统计学中,有三大常见的分布,它们分别是正态分布、均匀分布和指数分布。
这些分布在各个领域都有广泛的应用,能够帮助我们更好地理解和解释现象。
首先,正态分布是统计学的核心概念之一。
正态分布也被称为高斯分布,它的形状近似为一个钟形曲线。
正态分布在自然界中广泛存在,例如人的身高、体重等,也在许多地方出现,如测试成绩、产品质量等。
统计学家常常使用正态分布来研究和描述各种现象,并通过计算均值和标准差来分析数据的集中度和离散程度。
正态分布也是许多假设检验和参数估计方法的基础,为我们进行科学研究和决策提供了强有力的工具。
其次,均匀分布是一种简单且常见的分布形式。
在均匀分布中,所有的取值都具有相同的概率。
这种分布可以用来模拟随机实验的结果,例如抛硬币的正反面、掷骰子的点数等。
均匀分布还在随机数生成、概率推断等方面发挥着重要作用。
在实际应用中,均匀分布也可以用来描述一些特定的自然现象,如某些地区的降雨量、温度等。
通过研究和理解均匀分布,我们可以更好地预测和解释这些现象。
最后,指数分布是描述事件发生时间的一种重要分布。
在指数分布中,事件发生的概率密度函数随时间指数级衰减。
这种分布常常用于研究和模拟一些连续系统的寿命、等待时间等。
指数分布也在信号处理、通信理论、生物学等领域中得到广泛应用。
通过对指数分布的研究,我们能够更好地理解和预测事件的发生模式,为我们提供关键信息,以便做出合理的决策。
总而言之,正态分布、均匀分布和指数分布是统计学中三大重要分布。
它们在各个领域都有广泛的应用,帮助我们更好地理解和解释现象,提供科学依据和决策支持。
通过对分布的研究和应用,统计学可以发挥重要作用,推动科学发展和社会进步。
常见统计分布及其特点统计分布是描述数据集合中数据分布情况的一种方法。
统计学中存在着很多常见的统计分布,每个分布都具有其独特的特点和应用领域。
以下是一些常见的统计分布及其特点的介绍。
1. 正态分布(Normal Distribution)正态分布是最常见的分布之一,也被称为高斯分布。
它的特点是呈钟形曲线,对称分布,均值和标准差完全决定了其形状。
正态分布有广泛的应用,尤其在自然科学和社会科学中。
2. 二项分布(Binomial Distribution)二项分布是指在一系列独立的试验中,每次试验只有两个可能的结果:成功或失败。
每次试验的成功概率由固定的参数p确定。
二项分布的特点是具有两个参数n和p,其中n为试验的次数,p为每次试验的成功概率。
二项分布在生物学、医学、工程等领域中经常被使用。
3. 泊松分布(Poisson Distribution)泊松分布用于描述单位时间内事件发生的次数的概率分布。
这个分布有一个参数λ,表示单位时间内事件的平均发生率。
泊松分布的特点是时间间隔内事件的数量是不确定的,但平均发生率λ是已知的。
泊松分布在物理学、生物学、通信技术等领域中被广泛应用。
4. 均匀分布(Uniform Distribution)均匀分布是指在一个有限的区间内,每个数出现的概率相等。
均匀分布的特点是概率密度函数在区间内是常数。
均匀分布在模拟、随机数生成等领域中经常被使用。
5. 指数分布(Exponential Distribution)指数分布用于描述一个事件发生之间的时间间隔的概率分布。
指数分布的特点是具有一个参数λ,表示事件的平均发生率。
指数分布在可靠性工程、生物学、等领域中被广泛应用。
6. t分布(t Distribution)t分布是用于小样本情况下的假设检验和置信区间估计的重要分布。
与正态分布相比,t分布的尾部更厚,更适合于小样本情况的推断。
t分布在统计学中常用于处理样本容量较小的情况。
7. F分布(F Distribution)F分布是用于分组之间方差的比较的一种分布。
统计学分布类型
统计学分布是根据数据分析所有可能的可能的量的范围,把它们分类成多个分组,并建立相应的概率函数,以描述这些变量出现的可能性。
统计学分布由以下几种类型:
1、正态分布:正态分布是最常见的统计学分布,又称钟形曲线。
它具有两个参数:平均值μ和标准差σ,针对一些机器运行正态分布可以用来模拟变量的分布情况;
2、均匀分布:均匀分布是指变量的概率分布在一个给定的范围内是均匀的,它由两个参数:最小值a和最大值b决定;
3、伽马分布:伽马分布又称卡方分布,是描述连续随机变量采样期望值与其标准差之比的分布。
它包含一个参数,即期望值与标准差之比γ;
4、负指数分布:负指数分布也称指数分布,是一个经典的概率分布,它可以解释一系列以负指数或非负指数的累积概率分布,它包含一个参数λ,它是和具体分布有关的常数;
5、卡方分布:卡方分布是一种统计分布,又称伽马分布,是描述连续随机变量采样期望值与其标准差之比的分布。
卡方分布由一个参数ν决定,变量ν是采样期望与标准差之比;。
统计学常用分布一、引言在统计学中,分布是描述数据变化规律和概率的重要工具。
不同的数据类型和问题背景需要采用不同的分布来描述。
本篇文章将介绍统计学中常用的几种分布,包括正态分布、二项分布与泊松分布、指数分布与对数正态分布、卡方分布与t分布等。
二、正态分布正态分布是最常见的连续概率分布之一,它在自然现象、工程技术和社会科学等领域都有广泛的应用。
正态分布的曲线呈钟形,数据值集中在均值附近,随着远离均值,概率逐渐减小。
正态分布在统计学中具有重要地位,许多统计方法和模型都以正态分布为基础。
三、二项分布与泊松分布1.二项分布:二项分布是用来描述伯努利试验中的随机事件的概率分布,其中每次试验只有两种可能的结果,并且每次试验都是独立的。
二项分布适用于计数数据,尤其在生物实验和可靠性工程等领域有广泛应用。
2.泊松分布:泊松分布是二项分布在伯努利试验次数趋于无穷时的极限形式,常用于描述单位时间内随机事件的次数。
泊松分布在概率论和统计学中具有重要地位,广泛应用于保险、通信和生物医学等领域。
四、指数分布与对数正态分布1.指数分布:指数分布描述的是随机事件之间的独立间隔时间或者随机变量的概率分布。
指数分布常用于描述寿命测试和等待时间等问题,例如电话呼叫的间隔时间和电子元件的寿命等。
2.对数正态分布:对数正态分布在统计学中用于描述那些其自然对数呈正态分布的随机变量。
许多生物学、经济学和社会科学中的数据都服从对数正态分布,例如人的身高、体重以及股票价格等。
五、卡方分布与t分布1.卡方分布:卡方分布在统计学中主要用于描述离散型概率分布。
卡方分布是通过对两个独立的随机变量进行平方和运算得到的,常用于拟合检验和置信区间的计算。
2.t分布:t分布在统计学中广泛应用于样本数据的参数估计和假设检验。
相比于正态分布,t分布在数据量较小或参数偏离正态性时具有更好的稳定性。
t分布在金融、生物医学和可靠性工程等领域有广泛应用。
六、结论在统计学中,不同的数据类型和问题背景需要采用不同的分布来描述。
统计分布公式数据统计分布是描述一组数据的集中趋势和分散程度的重要工具,它是对大量随机现象的抽象和概括。
在数据分析中,我们常常会遇到各种各样的统计分布,如正态分布、泊松分布、卡方分布等。
这些分布都有其特定的公式和特性,可以帮助我们更好地理解和解释数据。
一、正态分布正态分布,又称为高斯分布,是最常见的一种连续型概率分布。
它的特点是所有的模式值都集中在均值附近,且离均值越远,概率密度越小。
正态分布的公式如下:f(x) = 1/σ√(2π) * e^[-(x-μ)^2 / (2σ^2)]其中,μ为均值,σ为标准差,e为自然对数的底数,约为2.71828。
这个公式描述了任意一个x值出现的概率。
二、泊松分布泊松分布是一种离散型概率分布,通常用于描述单位时间内随机事件发生的次数。
例如,电话交换机接到呼叫的次数、汽车通过路口的次数等。
泊松分布的公式如下:P(X=k) = (λ^k * e^-λ) / k!其中,λ为平均发生率,k为发生的次数,!表示阶乘。
这个公式描述了在给定时间内,事件发生k次的概率。
三、卡方分布卡方分布是一种连续型概率分布,主要用于检验样本是否符合某种理论分布,或者比较两个样本的差异。
卡方分布的自由度(df)等于构成卡方统计量的独立变量的个数减1。
卡方分布的公式如下:f(x) = (1/2^(df/2) * Γ(df/2)) / √(x) * e^(-x/2)其中,Γ为伽马函数,x为卡方统计量的值,df为自由度。
这个公式描述了在给定自由度下,卡方统计量取某个值的概率。
四、t分布t分布是一种连续型概率分布,主要用于小样本的均值检验和方差分析。
t分布的形状取决于自由度,当自由度趋于无穷时,t分布接近正态分布。
t分布的公式如下:f(t) = Γ((ν+1)/2) / (√(νπ) * Γ(ν/2)) * (1+t^2/ν)^(-(ν+1)/2)其中,t为t统计量的值,ν为自由度。
这个公式描述了在给定自由度下,t统计量取某个值的概率。
统计学中的统计分布与概率密度函数统计学是一门涉及数据收集、分析和解释的学科。
在统计学中,我们经常使用统计分布和概率密度函数来了解随机变量的分布和概率性质。
本文将介绍统计分布和概率密度函数的概念及其在统计学中的应用。
一、统计分布统计分布是随机变量取值的可能性及其对应的概率的分布。
通过统计分布,我们可以了解随机变量在不同取值上的概率分布情况,从而得出更多关于数据的信息。
在统计学中,常见的统计分布包括二项分布、正态分布、泊松分布等。
下面我们将分别介绍这些常见的统计分布及其概率密度函数。
1. 二项分布二项分布是一种离散型概率分布,适用于一系列独立的伯努利试验,每个试验有两个可能的结果(成功或失败),且成功的概率保持不变。
二项分布的概率质量函数如下:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,n为试验次数,k为成功次数,p为成功概率,C(n, k)为组合数。
2. 正态分布正态分布是一种连续型概率分布,也是最为常见的分布之一。
正态分布的概率密度函数如下:f(x) = (1/σ√(2π)) * e^(-(x-μ)^2/(2σ^2))其中,μ为均值,σ为标准差,e为自然对数的底。
正态分布具有对称性,呈钟形曲线状分布。
许多自然现象和统计现象都可以用正态分布来描述。
3. 泊松分布泊松分布是一种离散型概率分布,适用于描述计数型事件在给定时间或空间中发生的概率。
泊松分布的概率质量函数如下:P(X=k) = (λ^k * e^(-λ))/(k!)其中,λ为平均发生率,k为发生的次数。
泊松分布的特点是随机事件在时间或空间上是相互独立、出现概率相等的。
二、概率密度函数概率密度函数是用来描述连续型随机变量的概率分布的函数。
对于一个连续型随机变量X,其概率密度函数f(x)满足以下两个条件:1) f(x) ≥ 0,对于所有的x。
2) ∫f(x)dx = 1,其中积分范围为X的全集。
概率密度函数可以用来计算连续型随机变量在某一范围内取值的概率。
附录一常见分布汇总一、二项分布二项分布Binomial Distribution,即重复n次的伯努利试验Bernoulli Experiment,用ξ表示随机试验的结果, 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是;二、泊松poisson分布1、概念当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np;通常当n≧10,p≦时,就可以用泊松公式近似得计算;2、特点——期望和方差均为λ;3、应用固定速率出现的事物;——在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客,以固定的平均瞬时速率λ或称密度随机且独立地出现时,那么这个事件在单位时间面积或体积内出现的次数或个数就近似地服从泊松分布三、均匀分布uniform设连续型随机变量X的分布函数Fx=x-a/b-a,a≤x≤b则称随机变量X服从a,b上的均匀分布,记为X~Ua,b;四、指数分布Exponential Distribution1、概念2、特点——无记忆性1这种分布表现为均值越小,分布偏斜的越厉害;2无记忆性当s,t≥0时有PT>s+t|T>t=PT>s 即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s 小时的概率相等;3、应用在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果五、正态分布Normal distribution1、概念2、中心极限定理与正态分布说明了正态分布的广泛存在,是统计分析的基础中心极限定理:设从均值为μ、方差为σ^2;有限的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n 的正态分布;3、特点——在总体的随机抽样中广泛存在;4、应用——正态分布是假设检验以及极大似然估计法ML的理论基础定理一:设X1,X2,X3.;;Xn是来自正态总体Nμ,δ2的样本,则有样本均值X~Nμ,δ2/n——总体方差常常未知,用t分布较多六、χ2卡方分布与方差有关chi-square distribution1、概念若n个相互独立的随机变量ξ、ξ、……、ξn ,均服从标准正态分布也称独立同分布于标准正态分布,则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布chi-squaredistribution,其中参数n称为注意假设随机干扰项呈正态分布;因此,卡方分布可以和RSS残差平方和联系起来;用RSS/δ2,所得的变量就是标准正态分布,就服从卡方分布;2、卡方分布的特点1分布的为自由度 n,记为 E = n;这个容易证明2分布的为2倍的自由度2n,记为 D = 2n;3如果互相独立,则:独立可加减服从分布,自由度;服从分布,自由度为3、图形特点4、应用定理二,设X1,X2,X3.;;Xn是来自正态总体Nμ,δ2的样本,则有样本均值X~Nμ,δ2/n1正态分布以及卡方分布是F检验的基础;大量的检验用到了F检验:F检验、三大检验;七、t学生分布用样本方差s来标准化——Student'st-distribution1、概念适用于δ2未知理解把样本标准正态化的U变换前提是方差已知,但总体方差是未知的,所以用样本方差来代替总体方差;根据中心极限定理,抽样服从方差为总体方差除以n 的正态分布;由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布u变换指把变量转换为标准正态分布思考为什么样本方差比总体方差要小因为一个是总体方差,一个是样本均值的方差;不同2、特点1与标准正态分布曲线相比,自由度v 越小,t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度v 愈大,t 分布曲线愈接近正态分布曲线,当自由度v=∞时,t 分布曲线为标准正态分布曲线;定理三:设X1,X2,X3.;;Xn 是来自正态总体N μ,δ2的样本,则有样本均值X~N μ,δ2/n,S 为样本方差 )(μ1-n t ~n /S X 注意S 是样本方差;中心极限定理说的是样本均值的方差;八、F 分布F-distribution1、概念F 分布定义为:设X 、Y 为两个独立的随机变量,X 服从自由度为k1的卡方分布,Y 服从自由度为k2的卡方分布,这2 个独立的卡方分布被各自的自由度除以后的比率这一统计量的分布2、特点1它是一种非对称分布;2它有两个自由度,即n1 -1和n2-1,相应的分布记为F n1 –1, n2-1, n1 –1通常称为分子自由度, n2-1通常称为分母自由度;3F 分布是一个以自由度和为参数的分布族,不同的自由度决定了F 分布的形状;4F 分布的性质:5残差平方和之比通常与F分布有关;九、逻辑分布logistic分类评定模型——最早应用最广的离散选择模型1、概念2、特点用作增长曲线并为二进制响应建模;在生物统计和经济领域使用;Logistic 分布由尺度和位置参数描述;Logistic 分布没有形状参数,也就是说其概率密度函数只有一个形状;下列图形显示了不同参数值对 Logistic 分布的效应;尺度参数的效应位置参数的效应Logistic 分布的形状与正态分布的形状相似,但 Logistic 分布的尾部更长;十、伽马分布1、概念——伽玛分布Gamma Distribution是统计学的一种连续概率函数;Gamma分布中的参数α称为形状参数shape parameter,β称为scale parameter;假设随机变量X为等到第α件事发生所需之等候时间, 密度函数为特征函数为伽马分布的可加性当两随机变量服从Gamma分布,且单位时间内频率相同时,Gamma数学表达式若随机变量X具有概率密度其中α>0,β>0,则称随机变量X服从参数α,β的伽马分布,记作Gα,β.九、extreme value distribution 极值分布十、DF分布与ADF分布——用于时间序列平稳性的单位根检验;八、pareto分布十、weibull分布。
常见统计分布及其特点常见的统计分布有:正态分布、均匀分布、二项分布、泊松分布、指数分布等。
1.正态分布:正态分布又称为高斯分布或钟形曲线分布,是最为常见的一种分布。
正态分布具有以下特点:-均值和中位数相等,分布的对称轴对称;-在均值处取得最大值,随着离均值的距离增大,分布的概率逐渐减小;-标准差决定了曲线的宽窄,标准差越大,曲线越宽;-68%的数据落在均值的一个标准差范围内,95%的数据落在均值的两个标准差范围内,99.7%的数据落在均值的三个标准差范围内。
2.均匀分布:均匀分布又称为矩形分布,是最简单的分布之一、均匀分布具有以下特点:-在一个有限的区间内,所有取值的概率相等;-分布曲线呈矩形,具有等宽;-在整个区间上积分等于13.二项分布:二项分布描述了在n次独立的重复实验中,成功的次数的分布情况。
二项分布具有以下特点:-每次实验只有两个可能的结果,成功或失败;-实验之间是独立的;-成功的概率和失败的概率保持不变;-成功的次数符合二项分布。
4.泊松分布:泊松分布描述了一个时间段或区域内随机事件发生的次数的分布情况。
泊松分布具有以下特点:-事件在一个固定时间段或区域内按独立的随机过程发生;-事件在一个极短时间段内发生的概率极低,即发生频率很低;-事件的平均发生次数相对较低。
5.指数分布:指数分布描述了连续发生独立随机事件的时间间隔的分布情况。
指数分布具有以下特点:-事件的发生时间间隔是独立的,事件间的时间间隔符合指数分布;-时间间隔的概率密度递减;-指数分布在实际应用中常用于描述等待时间、生命周期等。
这些统计分布常用于描述和分析随机事件的分布情况。
在实际应用中,我们可以根据样本数据的特点,选择合适的统计分布进行建模和分析。
在统计学中,概率分布函数可以帮助我们理解随机事件的分布规律,有助于对数据进行建模、预测和推断。
统计学常用分布及其分位数1. 引言在统计学中,分布是指一组数据在各个取值上的分布情况。
统计学常用的分布包括正态分布、均匀分布、二项分布等。
而分位数是衡量分布上部分数据所占比例的一个指标,常用于描述数据的分布形状和集中程度。
本文将介绍统计学常用分布以及它们的分位数。
2. 正态分布及其分位数正态分布是统计学中最重要的分布之一,其分布曲线呈钟形。
它的分布的均值为μ,方差为σ^2。
正态分布的分位数可以通过查找标准正态分布表来获得。
常用的分位数包括:•第一四分位数(Q1):将数据集分为四个部分,该分位数将数据集的前25%数据与后75%数据分开。
•第二四分位数(Q2):也就是中位数,将数据集分为两个相等的部分。
•第三四分位数(Q3):将数据集分为四个部分,该分位数将数据集的前75%数据与后25%数据分开。
3. 均匀分布及其分位数均匀分布是指在一段连续的数据区间内,各个数据点出现的概率是相等的。
均匀分布的分位数可以通过计算来获得。
常用的分位数包括:•下四分位数(Q1):将数据集分为四个部分,该分位数将数据集的前25%数据与后75%数据分开。
•上四分位数(Q3):将数据集分为四个部分,该分位数将数据集的前75%数据与后25%数据分开。
4. 二项分布及其分位数二项分布是常用的离散型分布,用于描述二分法试验在n次独立试验中成功的次数。
二项分布的分位数可以通过计算来获得。
常用的分位数包括:•下百分之P分位数:将数据集分为P%和(100-P)%两部分,下百分之P分位数将数据集的前P%数据与后(100-P)%数据分开。
5.本文介绍了统计学常用的分布及其分位数,分布的选取需要根据具体问题的特点来决定。
在实际应用中,通过计算或查表可以获得分布的分位数,从而对数据集的分布形状和集中程度有更深入的了解。
对于需要进行数据分析和统计推断的问题,了解常用分布及其分位数的特点和应用是非常重要的。
注意:本文只是对统计学常用分布及其分位数进行简要介绍,如需深入学习和应用,请参考相关的统计学教材和资料。
§1.4 常用的分布及其分位数1. 卡平方分布卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。
当X 1、X 2、…、Xn 相互独立且都服从N<0,1>时,Z=∑ii X 2的分布称为自由度等于n 的2χ分布,记作Z ~2χ<n>,它的分布密度p<z >=⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛Γ--,,00,2212122其他z e x n z n n 式中的⎪⎭⎫ ⎝⎛Γ2n =u d e u u n ⎰∞+--012,称为Gamma 函数,且()1Γ=1,⎪⎭⎫ ⎝⎛Γ21=π。
2χ分布是非对称分布,具有可加性,即当Y与Z 相互独立,且Y ~2χ<n >,Z ~2χ<m >,则Y+Z ~2χ<n+m >。
证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独立且都服从N<0,1>,再根据2χ分布的定义以及上述随机变量的相互独立性,令Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +,Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +,即可得到Y+Z ~2χ<n +m >。
2. t 分布若X 与Y 相互独立,且X ~N<0,1>,Y ~2χ<n >,则Z =nY X 的分布称为自由度等于n 的t 分布,记作Z ~ t <n >,它的分布密度P<z>=)()(221n nn ΓΓ+2121+-⎪⎪⎭⎫ ⎝⎛+n n z 。
请注意:t 分布的分布密度也是偶函数,且当n>30时,t 分布与标准正态分布N<0,1>的密度曲线几乎重叠为一。
这时,t 分布的分布函数值查N<0,1>的分布函数值表便可以得到。