无机填料的表面改性研究进展
- 格式:pdf
- 大小:209.95 KB
- 文档页数:4
空心玻璃微珠增强泡沫材料的研究和应用进展路瑶;林佩洁;赵华蕾;王燕萍;王依民【摘要】空心玻璃微珠是一种新型无机填料,经表面改性后,与发泡基体复合,制备新型复合泡沫材料。
同传统发泡材料相比,该复合材料质轻且机械性能优异,在航天航空以及深海开发等领域,特别是制备浮力材料方面,应用前景广阔。
文章综述了空心玻璃微珠表面改性方式、空心玻璃微珠/发泡体复合材料的发泡方法和成型工艺,在此基础上对近年来国内外研究和应用现状进行了介绍。
%Hollow glass beads (HGB) are a new type of inorganic filler.Together with resin matrix,they are a-ble to produce novel compsite foams after surface modification .Compared to ordinary foams , the composites have light weight and excellent mechanical properties .The outstanding properties of HGB filled foams lead to wide usage in the fields of aerospace and deep sea development ,especially in preparing buoyancy materials .The ways to modify HGB,methods of foaming and molding process are reviewed in this article ,and what is more ,the research and appli-cation progress accomplished recently at home and abroad are introduced as well .【期刊名称】《合成技术及应用》【年(卷),期】2013(000)002【总页数】6页(P18-23)【关键词】空心玻璃微珠;泡沫材料;表面改性;无机填料【作者】路瑶;林佩洁;赵华蕾;王燕萍;王依民【作者单位】东华大学材料科学与工程学院,上海 201620;东华大学材料科学与工程学院,上海 201620;东华大学材料科学与工程学院,上海 201620;东华大学材料科学与工程学院,上海 201620;东华大学材料科学与工程学院,上海 201620; 东华大学纤维材料改性国家重点实验室,上海 201620【正文语种】中文【中图分类】TU532.6;TQ328泡沫塑料是一种以树脂为主体,内部含有许多微小泡孔的塑料制品。
聚合物/纳米碳酸钙复合材料研究进展摘要: 综述了表面处理对聚合物/纳米碳酸钙复合材料力学性能的影响、纳米碳酸钙在聚合物基体中的分散机理和对聚合物结晶行为的影响,并展望了聚合物/纳米碳酸钙复合材料的发展方向和前景。
关键词:聚合物基复合材料纳米碳酸钙表面处理分散机理结晶行为聚合物的填充改性已经有很长的历史了。
其最初的目的只是为了增量,以降低成本;后来发展到增韧增强基体树脂以代替某些工程塑料,从注重力学性能的提高进而开发功能性填充塑料。
大量的研究表明,在相同的填充条件下,超细填充体系的力学性能明显高于普通填料填充体系,即超细填料的填充改性效果更好、效率更高。
近年来,纳米材料的制备技术已经有了很大的突破,特别是纳米材料与常规材料相比具有一些特有的效应,如小尺寸效应、表面效应和宏观量子隧道效应等,因此其宏观理化性能将明显不同于且在许多特性上优于常规粒状或块状材料。
正因为如此,有学者预测以无机纳米粒子填充聚合物对于新型功能复合材料的开发和聚合物的填充改性具有重要意义;同时也是目前乃至今后几十年的研究热点之一[1]。
但是纳米粒子具有粒径小、粒子比表面积大、孔隙率大和表面能很高的特点,因此纳米粒子本身极易团聚,用通常的熔融共混方法想得到真正的纳米复合材料几乎是不可能的。
所以,在聚合物基纳米复合材料的研究中,主要采用插层聚合[2-4]、溶胶-凝胶法[5-6]等方法,将纳米粒子以纳米尺度均匀分散于聚合物基体中。
但是,这些方法都不利于实现工业化生产。
如果在纳米粒子表面覆盖一层单分子的界面活性剂就可以防止它们凝聚,使其在树脂基体中以原生粒子形态均匀分散成为可能,就可以采用常规的熔融共混法来制备聚合物/无机纳米粒子复合材料。
如果填料在聚合物基体中的分散程度达到了纳米尺度(<100nm),聚合物和填料之间的界面积将非常大,会产生很强的界面相互作用;这样,就有可能将无机物的刚性、尺寸稳定性和热稳定性与聚合物的韧性、可加工性和介电性能等完美的结合起来,获得综合性能优异的纳米复合材料。
无机粉体表面改性的目的、原理及方法及改性剂的选择
虽然无机粉体表面改性的目的因应用领域的不同而异,但总的目的是通过粉体改性剂改善或提高粉体材料的应用性能或赋予其新的功能以满足新材料、新技术发展或者新产品开发的需要。
无机粉体改性的目的是什么呢
1.使无机矿物填料由一般增量填料变为功能性填料;
2.提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;
3.在无机/无机复合粉料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;
4.通过对层状粉体进行插层改性,制备新型的层间插层矿物材料;
5.对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能
6.超细和纳米粉体制备中的抗团聚;
粉体表面改性的原理和方法
1.表面或界面性质与其应用性能的关系
2.表面或界面与表面改性剂或者处理剂的作用机理和作用模型
3.各种表面改性方法的基本原理或者理论基础,包括表面改性处理过程中的热力学和动力学,模拟和化学计算等。
纳米碳酸钙改性技术研究进展及代表性应用综述吕津辉/文【摘要】碳酸钙是一种重要的无机粉体填充材料,由于其原料来源丰富且成本低,生产方法简单,性能比较稳定,被广泛的应用于橡胶、涂料、胶黏剂、造纸、塑料、食品等行业。
按照生产方法的不同,碳酸钙可分为重质碳酸钙和轻质碳酸钙。
而活性碳酸钙,又称改性碳酸钙,是通过加入表面处理剂对重钙或轻钙进行表面改性制得[1]。
【关键词】纳米碳酸钙;改性剂;改性技术;纳米碳酸钙应用;填加纳米碳酸钙是20世纪80年代发展起来的一种新型超细固体粉末材料,其粒度介于0.001~0.1um(即1~100nm)之间等。
由于纳米碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的表面效应、小尺寸效应、量子尺寸效应和宏观量子效应[1]。
为了使具有良好性能的纳米碳酸钙发挥优良性能,使用者对纳米碳酸钙进行表面改性,使其成为了一种具有多功能性的补强填充改性材料。
改性后的碳酸钙表面吸油值明显降低,凝聚粒子的粒径减小,粒子分散性增强,作为填料用于生产后的制品塑化时间缩短,塑化温度下降,溶体流动指数上升,流动性得到显著改善[2]。
1.表面改性的理论1.1 化学键理论偶联剂一方面可以与纳米碳酸钙表面质子形成化学键,另一方面要与高聚物有较强的结合界面,进而提高纳米粒子的力学性能[1]。
1.2 表面浸润理论因为复合材料的性能受高分子物质对纳米填料浸润能力的影响,若填料能完全被浸润,那么树脂对高能表面的物理吸附将提供高于有机树脂内聚强度的粘结强度[1]。
1.3 可变形层理论吸附树脂会优先选择偶联剂改性填料的表面作配合剂,一个范围的固化不均会生成变形层,变形层是一个比偶联剂在聚合物和填料之间的单分子层厚得多的柔树脂层,它能防止界面裂缝的扩图1流化床造粒工艺流程展,松弛界面应力,加强界面的结合强度[1]。
1.4 约束层理论模量在高模量粉体和低模量粉体之间时,传递应该是最均匀的[1]。
造纸填料留着的改善及加填料的施胶障碍控制造纸填料通常为无机填料,主要包括滑石粉、二氧化钛、碳酸钙及高岭土等,其应用可显著改善纸品的不透明度、白度、光泽度、平滑度、孔隙度、尺寸稳定性、油墨吸收性、印刷适应性及书写适应性等,并可显著降低造纸成本,具有十分重要的应用价值。
然而,随着填料用量的增加,造纸填料的应用可产生一系列问题,其中填料留着及加填纸的施胶障碍问题值得予以关注。
造纸填料的粒子尺寸远远小于纸浆纤维,往往不能有效地借助于机械截留作用而实现其自身的留着,当将其直接引入至纸料体系中时,其在纸幅中的留着性能具有一定局限性。
此外,随着填料用量的增加,填料留着率往往有所下降,使造纸白水体系中的细小组分含量显著增加,由此在一定程度上增加了实际应用的困难性,也使加填量具有一定局限性(通常在质量分数15%~20%以下)。
因此,造纸填料留着的改善具有十分重要的意义。
施胶剂分为浆内施胶剂和表面施胶剂二大类,可赋予纸品抵抗液体渗透的性能,在造纸工业中具有重要的用途。
对于浆内施胶剂而言,我国纸品总量中的70%左右需要进行浆内施胶,因此浆内施胶剂具有十分广阔的应用前景。
然而,造纸填料的应用对浆内施胶剂的施胶效率往往会产生负面影响,使达到特定施胶效果所需的施胶剂用量及施胶成本增加,由此产生了施胶障碍。
这主要是因为,造纸填料的比表面积远远大于纸浆纤维,可对浆内施胶剂产生优先吸附,使大量的胶料粒子吸附至填料粒子表面;随着填料用量的增加,施胶障碍现象将尤为突出,纸品往往难以获得符合应用标准的施胶度,且施胶剂用量也难以控制,由此也使加填量往往局限于一定范围内,增加了实际应用的困难性和复杂性。
因此,加填纸的施胶障碍控制也具有十分重要的意义。
本文即对国际上所出现的造纸填料留着的改善及加填纸的施胶障碍控制的各种主要技术进行评述,以期为相关研究与开发提供参考。
1 填料留着的改善关于填料留着的改善,国际上已有大量报道,已出现的相关技术主要包括造纸助留剂的应用、纤维/填料复合技术、纤维改性与处理技术、纤维的外表面细纤维化处理技术及填料改性与处理技术。
中国无机粉体表面改性技术发展现状郑水林(中国矿业大学北京校区北京 100083)摘要:目前应用的表面改性工业主要有干法工艺、湿发工业、复合工艺三大类;表面改性设备部分是从化工、塑料、粉碎、分散等行业中引用过来的,专用粉体表面改性设备的开发始于20世纪90年代后期;表面改性剂主要有偶联剂、表面活性剂、有机低聚物、不饱和有机酸、有机硅、水溶性高分子以及金属氧化物及其盐等;表征技术有直接表征和对表面改性粉体应用性能的表征两种。
本文综述了中国无机粉体表面改性技术的现状并对其主要发展趋势进行了分析和展望。
关键词:无机粉体表面改性改性剂改性机前言以硅酸盐、碳酸盐、硫酸盐、氧化物、氢氧化物、碳化物等为主要成分的无机粉体及其复合无机粉体是一类在现代工业、农业、建筑、交通运输、航空航天、环保等领域得到广泛应用的新材料。
这类新型无机粉体材料除了粒度微细且分布合理外,另一个重要特征是表面性质依用途不同进行了表面改性或优化处理,其目的是改善粉体的应用性能,如提高无机粉体的分散性、与复合材料中基料的相容性、改善材料的电性、热性、光性、耐侯性、化学稳定性以及改善复合材料的力学性能等【1】。
在复合材料迅速发展的现代社会,作为复合材料填料的无机粉体已逐渐成为复合材料不可或缺的重要组成部分。
无论是有机/无机复合材料还是无机/无机复合材料,粉体的表面特性,特别是超细粉体和纳米粉体的表面特性,是影响材料性能的关键因素之一。
其它诸如涂料或涂层材料吸附与催化材料等,粉体的表面性质都是决定其材料性能的关键因素之一。
正因为如此,粉体表面改性或表面处理技术已成为粉体加工技术的重要组成部分之一。
中国在这一领域虽然起步较晚,但近二十年来,尤其是近十年来,也有了较快发展【2】。
表面改性技术的主要组成部分是表面改性工艺、设备、表面改性剂及其配方、应用和表征技术等几方面,本文以工业化表面改性或表面处理技术为基点,简要回顾总结我过无机粉体表面改性技术的发展现状及其发展趋势。
无机填料对环氧/聚酰胺固化体系热膨胀行为的影响研究分别研究3种无机填料氧化铝(Al2O3)、氮化硼(BN)和二氧化硅(SiO2)以及这3种填料经表面处理后对环氧树脂/200#聚酰胺体系热膨胀行为的影响。
研究表明,表面处理后的无机填料能在树脂基体中分布均匀,其固化体系的热膨胀行为变化比较均匀且有规律。
标签:无机填料;环氧树脂;热膨胀行为环氧树脂胶粘剂由于具有优异的粘接性能而被广泛应用于航空航天、汽车、微电子和精密机械等领域。
然而作为一种高分子胶粘剂,其线胀系数较大,固化后内应力较大、质脆,尤其是在粘接玻璃陶瓷等无机材料时往往存在线胀系数差异较大等问题,因而限制了其更广泛地使用[1,2]。
加入无机填料是降低环氧树脂热膨胀的常用方法,不同无机填料对降低线胀系数有不同的作用机理和效果,树脂基体的不同也会影响热膨胀行为[3~11]。
本研究以环氧树脂/200#聚酰胺为基体,分别以氧化铝(Al2O3)、氮化硼(BN)和二氧化硅(SiO2)作为填料,制备了含不同质量分数填料的环氧树脂基复合材料。
采用TMA实验方法对复合材料的性能进行了分析,探讨了填料的种类、含量对环氧树脂固化体系热膨胀行为的影响。
1 实验部分1.1 原料与仪器环氧树脂E51,工业级,岳阳树脂厂;200#聚酰胺,工业级,天津延安化工厂;氧化铝(Al2O3,含量为99%,粒径为20 nm),山东淄博亨达材料有限公司;氮化硼(BN,含量为99%,粒径为30 nm),上海超威纳米科技有限公司;二氧化硅(SiO2,含量为99%,粒径为50μm),天津市双船化学试剂厂;无水乙醇,分析纯,哈尔滨市新达化工厂;硅烷偶联剂(KH-560),工业级,南京曙光化学有限公司。
EXSTAR DMS 6100型热机械分析仪,日本精工公司。
1.2 不同环氧固化体系的制备1.2.1 表面处理方法制备质量分数为2%的KH-560乙醇溶液,将Al2O3、BN和SiO2粉末分别浸入到等质量的KH-560乙醇溶液中并搅拌20 min后烘干,制得偶联剂处理过的无机粉末。
无机填料的改性及其在复合材料中的应用随着复合材料讨论的深入进展和应用,作为复合材料组份之一的填料,日益受到了人们的广泛重视。
填料是材料改性的一种紧要手段,不仅可以降低材料的成本,而且可以显著地改善材料的各种性能,给与材料新的特征,扩大其应用范围。
但由于填料与聚合物在化学结构和物理形态上,存在着显著的差异,两者缺乏亲和性,因此必需对填料进行表面活化处理,以使填料与聚合物两者之间达到很好的浸润。
1填料的表面改性技术填料表面改性,是对填料的性质进行优化,开拓新的应用领域,提高工业价值和附加值的有效途径和紧要技术之一。
通过更改填料表面原有的性质,如亲油性、吸油率、浸润性、混合物粘度等,可以改善填料与聚合物的亲合性、相容性以及加工流动性、分散性,加强填料和聚合物界面之间的结合力,使复合材料的综合性能得到显著的提高,因而填料改性技术的进展,就成为当前很活跃的一个讨论课题。
1.1偶联剂处理偶联剂是一种能够加强无机填料与聚合物之间亲合力的有机化合物。
其通过对无机填料进行化学反应,或物理包覆等方法,使填料表面由亲水性变成亲油性,达到与聚合物的紧密结合从而提高复合材料的综合性能。
目前使用最多的偶联剂,是硅烷偶联剂、钛酸酯和铝酸酯偶联剂。
其中硅烷偶联剂又是品种最多、用量最大的一种,重要用于填充热固性树脂的玻璃纤维和颗粒状含硅填料的表面处理。
如采纳硅烷偶联剂对云母进行预处理,可以明显提高云母填充聚丙烯复合材料的力学性能、热性能和电性能。
用硅烷偶联剂处理石英填充聚氯乙烯复合材料,也能显著加强其力学强度。
与硅烷偶联剂不同,钛酸酯偶联剂能给与填充体系较好的综合性能,如钛酸酯偶联剂处理CaCO3、炭黑、玻璃纤维和滑石粉时,能与无机填料表面的自由质子反应,在填料表面形成有机单分子层,因而能显著改善无机填料与聚烯烃之间的相容性。
故在选用偶联剂时,要综合考虑基体树脂的类型和填料的物化性质。
由于偶联剂对填充效果起着至关紧要的作用,所以偶联剂的开发和偶联技术,依旧是紧要的讨论领域,应重点讨论适应范围广、改性效果好、成本低的新型偶联剂和相应的偶联技术。