《粉体表面改性》--3表面改性剂
- 格式:pdf
- 大小:700.60 KB
- 文档页数:70
无机粉体表面改性的目的、原理及方法及改性剂的选择
虽然无机粉体表面改性的目的因应用领域的不同而异,但总的目的是通过粉体改性剂改善或提高粉体材料的应用性能或赋予其新的功能以满足新材料、新技术发展或者新产品开发的需要。
无机粉体改性的目的是什么呢
1.使无机矿物填料由一般增量填料变为功能性填料;
2.提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;
3.在无机/无机复合粉料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;
4.通过对层状粉体进行插层改性,制备新型的层间插层矿物材料;
5.对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能
6.超细和纳米粉体制备中的抗团聚;
粉体表面改性的原理和方法
1.表面或界面性质与其应用性能的关系
2.表面或界面与表面改性剂或者处理剂的作用机理和作用模型
3.各种表面改性方法的基本原理或者理论基础,包括表面改性处理过程中的热力学和动力学,模拟和化学计算等。
玻璃微珠改性技术方法大全以及粉体表面改性剂的作用空心玻璃微珠是由纳硅硼酸盐材料经特殊工艺制成的薄壁、封闭的微小球体,球体内部包裹一定量的气体,其主要成分为硅酸盐,具有良好的综合性能,耐高温,耐腐蚀、防辐射、密度小、低导热率、高绝缘度、热稳定性好、化学稳定性好等,作为复合材料的填料使用,能降低基体密度,提高基体的刚度、强度、绝缘性、尺寸稳定性等。
广泛应用于建材、塑料、橡胶、涂料、航海和航天等领域。
玻璃微珠表面改性技术表面改性是优化玻璃微珠等无机粉体材料性能的关键技术之一,对提高材料的应用性能和价值起着至关重要的作用,主要方法有:表面化学改性、表面包覆改性、高性能表面改性及机械力化学改性。
(1)表面化学改性所谓表面化学改性是指通过表面改性剂与颗粒表面之间的化学吸附作用或者化学反应,改变粒子的表面结构和状态,从而达到表面改性的目的。
表面化学改性方法是目前最常用的表面改性方法,在玻璃微珠等无机粉体材料表面改性技术中占有及其重要的地位。
(2)表面包覆改性表面包覆改性是利用无机物或有机物对无机粒子表面进行涂覆/涂层以达到改性的方法,包覆物理涂覆、化学包覆及简单化学反应或沉淀现象进行包覆。
化学包覆是利用官能团反应、游离基反应、溶胶吸附等对无机粉体进行表面包覆改性,从而改善其在高分子聚合物的分散性、相容性等,让其具有更广的使用价值。
物理涂覆是利用表面活性剂、水溶性或者油溶性高分子化合物等对粉体表面进行覆膜处理来达到表面改性的目的,进而改善无机粉体的胶结能力、强度、耐温能力等。
(3)高能表面改性高能表面改名是指利用紫外线、红外线、电晕放电、等离子提照射和电子束辐射等办法对粉体进行表面处理的方法。
(4)机械力化学改性机械力化学改性是利用粉体超细粉碎及其他强烈机械力作用有目的的激活颗粒表面,使其结构复杂或表面无定型化,从而增加其与有机物或其它无机物的反应活性。
机械力化学改性有两层含义:(1)利用矿物超细粉碎规程中机械应力的作用激活矿物表面,使表面晶体结果与物理化学性质发生变化,从而实现应用需要。
一粉体表面改性概念粉体表面改性, 是指用物理、化学、机械等方法对粉体材料表面或界面进行处理,有目的地改变粉体材料表面的物理化学性质,如表面能、表面润湿性、电性、吸附和反应特性、表面结构和官能团、等等,以满足现代新材料,新工艺和新技术发展的需要。
二表面改性的目的(1)改善粉体颗粒的分散性、稳定性和相容性。
(2)提高粉体颗粒的化学稳定性,如耐药性、耐光性、耐候性等。
(3)改变粉体的物理性质,如光学效应、机械强度等。
(4)出于环保和安全生产目的。
三粉体表面改性技术的应用•(1)有机/无机复合材料(塑料、橡胶等)•改善无机填料(包括增量无机填料和功能性无机填料)与有机(高聚物)基料的相容性,提高其分散性及复合材料的综合性能•(2)油漆、涂料•提高涂料、油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性、保光性、保色性等•(3)无机/无机复合材料•提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料•(4)吸附与催化材料•提高选择性、活性和机械强度•(5)健康与环境保护•(6)超细和纳米粉体制备中的抗团聚•(7) 其它(插层改性)四粉体表面改性的主要研究内容•(1)粉体表面改性的原理和方法•表面或界面性质与其应用性能的关系•表面或界面与表面改性剂或处理剂的作用机理和作用模型•各种表面改性方法的基本原理或理论基础,包括表面改性处理过程的热力学和动力学,模拟和化学计算等•(2)表面改性剂及其配方•种类、结构、分子量、活性基团与其应用性能或功能的关系•与粉体表面及复合材料的作用机理和作用模型•用量和使用方法•新型和专用表面改性剂的制备或合成•(3)表面改性工艺与设备•不同种类和不同用途粉体表面改性的工艺流程和工艺条件•不同种类和不同用途粉体的表面改性配方•影响表面改性效果的因素•高性能和专用改性设备的研制开发•(4)过程控制与产品表征与检测技术•过程温度、浓度、酸度、时间及表面改性剂用量、表面包覆率或包膜厚度等监控技术•表面改性产品的表征与检测(直接检测和表征)方法及仪器;•控制参数与指标之间的对应关系及过程的智能化控制等。
《粉体材料表面改性》课程教学大纲课程代码:050542002课程英文名称:SurfaceModificationofpowder(A2)课程总学时:24讲课:24实验:0上机:0适用专业:粉体科学与工程专业大纲编写(修订)时间:2017.3一、大纲使用说明(一)课程的地位及教学目标粉体表面改性是粉体科学与工程专业方向课,为选修课。
本门课程讲授粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、各行业典型粉体及纳米粉体饿表面改性方法、实践及改性产品的检测及表征方法。
通过本课程的学习,不仅让学生掌握粉体表面改性的相关理论,同时培养学生发现、分析与解决问题的能力和精密进行科学研究的技能。
为学生将来从事粉末材料、粉体工程领域的生产、科研打下坚实的理论和实践基础。
通过本课程的学习,学生将达到以下要求:1.掌握粉体材料表面改性工艺的方法和原理;2.使学生掌握目前工业表面改性典型设备;3.使学生了解表面改性剂的种类、性质、使用条件;4.掌握粉体改性前后的物性变化及相关的检测方法;5.进一步结合创新创业培养目标,加强学生创新能力的培养,使学生具备独立进行粉体表面原位修饰工艺设计与设备选型的能力。
(二)知识、能力及技能方面的基本要求1.基本知识:掌握粉体表面改性一般知识,包括粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、改性产品的检测及表征方法等。
2.基本理论和方法:掌握粉体表面的物性,粉体表面改性的基本原理、掌握粉体表面改性工艺设计和设备;了解常见工业粉体的表面改性方法及应用。
3.基本技能:掌握粉体改性工艺设计计算、独立进行设备选型的技能等。
了解特种粉体的生产工艺、制备技术及行业发展趋势。
具备制备、加工特种粉体的必要的基础知识和基本技能。
(三)实施说明本课程安排在第七学期学习,共24学时,其中理论讲课24学时。
根据教学的需要,有针对性地对教学内容适当增减,各部分学时数可适当调整2学时。
一粉体表面改性概念粉体表面改性, 是指用物理、化学、机械等方法对粉体材料表面或界面进行处理,有目的地改变粉体材料表面的物理化学性质,如表面能、表面润湿性、电性、吸附和反应特性、表面结构和官能团、等等,以满足现代新材料,新工艺和新技术发展的需要。
二表面改性的目的(1)改善粉体颗粒的分散性、稳定性和相容性。
(2)提高粉体颗粒的化学稳定性,如耐药性、耐光性、耐候性等。
(3)改变粉体的物理性质,如光学效应、机械强度等。
(4)出于环保和安全生产目的。
三粉体表面改性技术的应用•(1)有机/无机复合材料(塑料、橡胶等)•改善无机填料(包括增量无机填料和功能性无机填料)与有机(高聚物)基料的相容性,提高其分散性及复合材料的综合性能•(2)油漆、涂料•提高涂料、油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性、保光性、保色性等•(3)无机/无机复合材料•提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料•(4)吸附与催化材料•提高选择性、活性和机械强度•(5)健康与环境保护•(6)超细和纳米粉体制备中的抗团聚•(7) 其它(插层改性)四粉体表面改性的主要研究内容•(1)粉体表面改性的原理和方法•表面或界面性质与其应用性能的关系•表面或界面与表面改性剂或处理剂的作用机理和作用模型•各种表面改性方法的基本原理或理论基础,包括表面改性处理过程的热力学和动力学,模拟和化学计算等•(2)表面改性剂及其配方•种类、结构、分子量、活性基团与其应用性能或功能的关系•与粉体表面及复合材料的作用机理和作用模型•用量和使用方法•新型和专用表面改性剂的制备或合成•(3)表面改性工艺与设备•不同种类和不同用途粉体表面改性的工艺流程和工艺条件•不同种类和不同用途粉体的表面改性配方•影响表面改性效果的因素•高性能和专用改性设备的研制开发•(4)过程控制与产品表征与检测技术•过程温度、浓度、酸度、时间及表面改性剂用量、表面包覆率或包膜厚度等监控技术•表面改性产品的表征与检测(直接检测和表征)方法及仪器;•控制参数与指标之间的对应关系及过程的智能化控制等。
粉体表面改性方法原理、工艺技术及使用的粉体改性剂无机粉体的表面改性是根据使用行业所需求粉体具备的性能而进行的对应表面改性,以满足现代新材料、工艺和技术的发展需求,提升原有产品的性能特点,而且还可以提升对应的产能以及生产效率,在粉体加工行业也越来越受到重视,目前无机粉体表面改性的方法主要为6大类。
1、方法一:物理涂覆方法原理:利用高聚物或树脂等对粉体表面进行处理,一般包括冷法和热法两种。
粉体改性剂:高聚物、酚醛树脂、呋喃树脂等。
影响因素:颗粒形状、比表面积、孔隙率、涂敷剂的种类及用量、涂敷处理工艺等。
适用粉体:铸造砂、石英砂等。
2、方法二:化学包覆方法原理:利用有机物分子中的官能团在无机粉体表面的吸附或化学反应对颗粒表面进行包覆,一般包括干法和湿法两种。
除利用表面官能团改性外,该方法还包括利用游离基反应、鳌合反应、溶胶吸附等进行表面包覆改性。
粉体改性剂:如硅烷、钛酸酯、铝酸酯、锆铝酸盐、有机铬等各种偶联剂,高级脂肪酸及其盐,有机铵盐及其他各种类型表面活性剂,磷酸酯,不饱和有机酸,水溶性有机高聚物等。
影响因素:粉体的表面性质,粉体改性剂种类、用量和使用方法,改性工艺,改性设备等。
适用粉体:石英砂、硅微粉、碳酸钙、高岭土、滑石、膨润土、重晶石、硅灰石、云母、硅藻土、水镁石、硫酸钡、白云石、钛白粉、氢氧化铝、氢氧化镁、氧化铝等各类粉体。
3、沉淀反应方法原理:通过无机化合物在颗粒表面的沉淀反应,在颗粒表面形成一层或多层“包膜”,以达到改善粉体表面性质,如光泽、着色力、遮盖力、保色性、耐候性、电、磁、热性和体相性质等。
粉体改性剂:金属氧化物、氢氧化物及其盐类等各类无机化合物。
影响因素:原料的性质(粒度大小和形状、表面官能团),无机表面改性剂的品种,浆液的pH值、浓度,反应温度和反应时间,洗涤、脱水、干燥或焙烧等后续处理工序。
适用粉体:钛白粉、珠光云母、氧化铝等无机颜料。
4、机械力化学方法原理:利用超细粉碎及其他强烈机械作用,有目的的对粉体表面进行激活,在一定程度上改变颗粒表面的晶体结构、溶解性能(表面无定形化)、化学吸附和反应活性(增加表面活性点或活性基团)等。