量子力学-第二章-定态薛定谔方程教学提纲
- 格式:ppt
- 大小:4.68 MB
- 文档页数:84
量⼦物理第⼆章薛定谔⽅程第2章薛定谔⽅程·德布洛意关于物质波的概念传到苏黎世后,薛定谔作了⼀个关于物质波的报告,报告后,德拜(P.Debye)评论说:有了波,就应有⼀个波动⽅程。
⼏个⽉后,薛定谔果然提出了⼀个波⽅程,这就是后来在量⼦⼒学中著名的薛定谔⽅程。
·薛定谔⽅程是量⼦⼒学的动⼒学⽅程,象⽜顿⽅程⼀样,不能从更基本的⽅程推导出来;它是否正确,只能由实验检验。
§1 薛定谔⽅程的建⽴(⼀种⽅法)⼀、薛定谔⽅程 1.⼀维薛定谔⽅程 · ⼀维⾃由运动粒⼦⽆势场,不受⼒,动量不变。
· ⼀维⾃由运动粒⼦的波函数(前已讲)由此有· 再利⽤可得此即ψ ? x = ( )P ψi h2ψ ? x 2 P 2h 2= -( ) ψ P 22m E = ? t= i h ( ) ψ (x , t )h 22m - ( ) ψ (x , t ) ?x 22⼀维⾃由运动粒⼦(⽆势场)的薛定谔⽅程·推⼴到若粒⼦在势场U (x , t ) 中运动由有⼀维薛定谔⽅程式中ψ =ψ (x , t )是粒⼦在势场U = U (x , t ) 中运动的波函数·和经典关系相⽐较,只要把P 22mE = +U (x , t ) P 22m E = +U (x , t )再作⽤到波函数ψ(x, t)上,即可得到上述⽅程。
2.三维薛定谔⽅程式由⼀维⽅程推⼴可得三维薛定谔⽅程式·拉普拉斯算符·当 U (r , t ) = 0时,⽅程的解,即三维⾃由运动粒⼦的波函数· 波函数的叠加原理薛定谔⽅程是ψ的线性微分⽅程;若ψ1、ψ2是⽅程的解,则 c 1ψ1 + c 2ψ2也是⽅程的解。
(c 1 、c 2是常数)★ E.Schrodinger & P.A.M.Dirac荣获1933年Nobel Prize (for the discovery of new productive forms of atomic theory)2 x 2 2y 22≡ + + ?2z 2⼆、定态薛定谔⽅程 1.⼀维定态薛定谔⽅程若粒⼦在恒定势场U = U (x ) 中运动(含常数势场U = U 0 )薛定谔⽅程式可⽤分离变量法求解。