第四讲 回归分析3(逐步回归分析)
- 格式:ppt
- 大小:875.50 KB
- 文档页数:46
逐步回归分析逐步回归分析1、逐步回归分析的主要思路在实际问题中, ⼈们总是希望从对因变量有影响的诸多变量中选择⼀些变量作为⾃变量, 应⽤多元回归分析的⽅法建⽴“最优”回归⽅程以便对因变量进⾏预报或控制。
所谓“最优”回归⽅程, 主要是指希望在回归⽅程中包含所有对因变量影响显著的⾃变量⽽不包含对影响不显著的⾃变量的回归⽅程。
逐步回归分析正是根据这种原则提出来的⼀种回归分析⽅法。
它的主要思路是在考虑的全部⾃变量中按其对的作⽤⼤⼩, 显著程度⼤⼩或者说贡献⼤⼩, 由⼤到⼩地逐个引⼊回归⽅程, ⽽对那些对作⽤不显著的变量可能始终不被引⼈回归⽅程。
另外, ⼰被引⼈回归⽅程的变量在引⼊新变量后也可能失去重要性, ⽽需要从回归⽅程中剔除出去。
引⼈⼀个变量或者从回归⽅程中剔除⼀个变量都称为逐步回归的⼀步, 每⼀步都要进⾏检验, 以保证在引⼈新变量前回归⽅程中只含有对影响显著的变量, ⽽不显著的变量已被剔除。
逐步回归分析的实施过程是每⼀步都要对已引⼊回归⽅程的变量计算其偏回归平⽅和(即贡献), 然后选⼀个偏回归平⽅和最⼩的变量, 在预先给定的⽔平下进⾏显著性检验, 如果显著则该变量不必从回归⽅程中剔除, 这时⽅程中其它的⼏个变量也都不需要剔除(因为其它的⼏个变量的偏回归平⽅和都⼤于最⼩的⼀个更不需要剔除)。
相反, 如果不显著, 则该变量要剔除, 然后按偏回归平⽅和由⼩到⼤地依次对⽅程中其它变量进⾏检验。
将对影响不显著的变量全部剔除, 保留的都是显著的。
接着再对未引⼈回归⽅程中的变量分别计算其偏回归平⽅和, 并选其中偏回归平⽅和最⼤的⼀个变量, 同样在给定⽔平下作显著性检验, 如果显著则将该变量引⼊回归⽅程, 这⼀过程⼀直继续下去, 直到在回归⽅程中的变量都不能剔除⽽⼜⽆新变量可以引⼊时为⽌, 这时逐步回归过程结束。
2、逐步回归分析的主要计算步骤(1) 确定检验值在进⾏逐步回归计算前要确定检验每个变量是否显若的检验⽔平, 以作为引⼈或剔除变量的标准。
逐步回归分析1、逐步回归分析的主要思路在实际问题中, 人们总是希望从对因变量有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析的方法建立“最优”回归方程以便对因变量进行预报或控制。
所谓“最优”回归方程, 主要是指希望在回归方程中包含所有对因变量影响显著的自变量而不包含对影响不显著的自变量的回归方程。
逐步回归分析正是根据这种原则提出来的一种回归分析方法。
它的主要思路是在考虑的全部自变量中按其对的作用大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那些对作用不显著的变量可能始终不被引人回归方程。
另外, 己被引人回归方程的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。
引人一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要进行检验, 以保证在引人新变量前回归方程中只含有对影响显著的变量, 而不显著的变量已被剔除。
逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其偏回归平方和(即贡献), 然后选一个偏回归平方和最小的变量, 在预先给定的水平下进行显著性检验, 如果显著则该变量不必从回归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方和都大于最小的一个更不需要剔除)。
相反, 如果不显著, 则该变量要剔除, 然后按偏回归平方和由小到大地依次对方程中其它变量进行检验。
将对影响不显著的变量全部剔除, 保留的都是显著的。
接着再对未引人回归方程中的变量分别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定水平下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继续下去, 直到在回归方程中的变量都不能剔除而又无新变量可以引入时为止, 这时逐步回归过程结束。
2、逐步回归分析的主要计算步骤(1) 确定检验值在进行逐步回归计算前要确定检验每个变量是否显若的检验水平, 以作为引人或剔除变量的标准。
值都近似相等。
故为方便起见,可取一个定数F*作为F检验的标准。
2. 计算每个变量的均数 j、离均差平方和(l ii、l jj),每两个变量的离均差积和l ij,以及相关系数r ij,并以求得的rij为元素列出原始相关矩阵R(0)(阵中r ij(0)=r ij):以后每引入或剔除一个变量都计为一步运算。
设R(0)经L步所得的R(L)为对于每一步,R(L)均同样按式(2)变换成R(L+1)。
设引入或剔除的变量为Xg(g为该变量的下标),按式(2)作变换Lg,则R(L)成R(L+1)时,两矩阵中的各元素rij,有如下关系式:3. 选自变量。
(1) 引入未选量。
按式(3)计算各未选量的偏回归平方和V j(L+1),找出其中最大者,记作Va(L+1),就它所对应的自变量Xa按式(4)作F检验:式中m′为已引入变量的个数。
当F1>F*时引入变量X a,并对R(L)按式(2)作变换La,得R(L+1);当F1≤F*时挑选变量工作就此结束。
(2)剔除已选量。
引入新变量后,对原先引入的已选量分别计算其偏回归平方和Vj(L):找出V j(L)中最小者,记作Vb(L)。
就Vb(L)所对应的自变量X b按式(6)作F检验。
当F2≤F*时,剔除Xb,并对R(L)按式(2)作变换Lb得R(L+1);下一步对其余已选量再按式(5)、(6)求Vj并作F检验,直到已选量中没有可剔除时为止;当F2>F*时,已选量都不能被剔除,于是再考虑从未选量中能否引入新变量。
如此反复进行到第L步,若已选量都不能被剔除,未选量都不能引入时,逐步运算结束。
4. 求回归方程。
由相关矩阵R(L)求得的回归方程称为标准回归方程,式中b′j是标准偏回归系数,按式(7)求得。
b'j=rj.m+1(L)。
(7)实用中多元线性回归方程常用变量Xj的原单位,因此须再按式(8)求化成原单位后X j的偏回归系数b j,=l YY,即Y的离均差平方和,l jj为X j的离均差平方和。
逐步回归分析字体[大][中][小]逐步回归是多元回归中用以选择自变量的一种常用方法。
本条目重点介绍的是一种“向前法”。
此法的基本思想是:将自变量逐个地引入方程,引入的条件是该自变量的偏回归平方和在未选入的自变量(未选量)中是最大的,并经F检验是有显著性的。
另一方面,每引入一个新变量,要对先前已选入方程的变量(已选量)逐个进行F检验,将偏回归平方和最小且无显著性的变量剔除出方程,直至方程外的自变量不能再引入,方程中的自变量不能再剔除为止。
另一种是“向后法”,它的基本思想是:首先建立包括全部自变量的回归方程,然后逐步地剔除变量,先对每一自变量作F(或t)检验,剔除无显著性的变量中偏回归平方和最小的自变量,重新建立方程。
接着对方程外的自变量逐个进行F检验,将偏回归平方和最大且有显著性的变量引入方程。
重复上述过程,直至方程中的所有自变量都有显著性而方程外的自变量都没有显著性为止(例见条目“多元线性回归”例1、2)。
此法在自变量不多,特别是无显著性的自变量不多时可以使用。
与一般多元回归相比,用逐步回归法求得的回归方程有如下优点:它所含的自变量个数较少,便于应用;它的剩余标准差也较小,方程的稳定性较好; 由于每步都作检验,因而保证了方程中的所有自变量都是有显著性的。
逐步回归分析的主要用途是:(1)建立一个自变量个数较少的多元线性回归方程。
它和一般多元回归方程的用途一样,可用于描述某些因素与某一医学现象间的数量关系,疾病的预测预报,辅助诊断等等。
(2) 因素分析。
它有助于从大量因素中把对某一医学现象作用显著的因素或因素组找出来,因此在病因分析、疗效分析中有着广泛的应用。
但通常还须兼用“向前法”、“向后法”,并适当多采用几个F 检验的界值水准,结合专业分析,从中选定比较正确的结果。
求回归方程的方法步骤如下:设有含量为n的样本,对每个观察单位观察了m个自变量X j(j=1,2,…m)和一个应变量Y(可记为X m+1),得原始数据如表1。