第四讲 回归分析3(逐步回归分析)
- 格式:ppt
- 大小:875.50 KB
- 文档页数:46
逐步回归分析逐步回归分析1、逐步回归分析的主要思路在实际问题中, ⼈们总是希望从对因变量有影响的诸多变量中选择⼀些变量作为⾃变量, 应⽤多元回归分析的⽅法建⽴“最优”回归⽅程以便对因变量进⾏预报或控制。
所谓“最优”回归⽅程, 主要是指希望在回归⽅程中包含所有对因变量影响显著的⾃变量⽽不包含对影响不显著的⾃变量的回归⽅程。
逐步回归分析正是根据这种原则提出来的⼀种回归分析⽅法。
它的主要思路是在考虑的全部⾃变量中按其对的作⽤⼤⼩, 显著程度⼤⼩或者说贡献⼤⼩, 由⼤到⼩地逐个引⼊回归⽅程, ⽽对那些对作⽤不显著的变量可能始终不被引⼈回归⽅程。
另外, ⼰被引⼈回归⽅程的变量在引⼊新变量后也可能失去重要性, ⽽需要从回归⽅程中剔除出去。
引⼈⼀个变量或者从回归⽅程中剔除⼀个变量都称为逐步回归的⼀步, 每⼀步都要进⾏检验, 以保证在引⼈新变量前回归⽅程中只含有对影响显著的变量, ⽽不显著的变量已被剔除。
逐步回归分析的实施过程是每⼀步都要对已引⼊回归⽅程的变量计算其偏回归平⽅和(即贡献), 然后选⼀个偏回归平⽅和最⼩的变量, 在预先给定的⽔平下进⾏显著性检验, 如果显著则该变量不必从回归⽅程中剔除, 这时⽅程中其它的⼏个变量也都不需要剔除(因为其它的⼏个变量的偏回归平⽅和都⼤于最⼩的⼀个更不需要剔除)。
相反, 如果不显著, 则该变量要剔除, 然后按偏回归平⽅和由⼩到⼤地依次对⽅程中其它变量进⾏检验。
将对影响不显著的变量全部剔除, 保留的都是显著的。
接着再对未引⼈回归⽅程中的变量分别计算其偏回归平⽅和, 并选其中偏回归平⽅和最⼤的⼀个变量, 同样在给定⽔平下作显著性检验, 如果显著则将该变量引⼊回归⽅程, 这⼀过程⼀直继续下去, 直到在回归⽅程中的变量都不能剔除⽽⼜⽆新变量可以引⼊时为⽌, 这时逐步回归过程结束。
2、逐步回归分析的主要计算步骤(1) 确定检验值在进⾏逐步回归计算前要确定检验每个变量是否显若的检验⽔平, 以作为引⼈或剔除变量的标准。
逐步回归分析1、逐步回归分析的主要思路在实际问题中, 人们总是希望从对因变量有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析的方法建立“最优”回归方程以便对因变量进行预报或控制。
所谓“最优”回归方程, 主要是指希望在回归方程中包含所有对因变量影响显著的自变量而不包含对影响不显著的自变量的回归方程。
逐步回归分析正是根据这种原则提出来的一种回归分析方法。
它的主要思路是在考虑的全部自变量中按其对的作用大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那些对作用不显著的变量可能始终不被引人回归方程。
另外, 己被引人回归方程的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。
引人一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要进行检验, 以保证在引人新变量前回归方程中只含有对影响显著的变量, 而不显著的变量已被剔除。
逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其偏回归平方和(即贡献), 然后选一个偏回归平方和最小的变量, 在预先给定的水平下进行显著性检验, 如果显著则该变量不必从回归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方和都大于最小的一个更不需要剔除)。
相反, 如果不显著, 则该变量要剔除, 然后按偏回归平方和由小到大地依次对方程中其它变量进行检验。
将对影响不显著的变量全部剔除, 保留的都是显著的。
接着再对未引人回归方程中的变量分别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定水平下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继续下去, 直到在回归方程中的变量都不能剔除而又无新变量可以引入时为止, 这时逐步回归过程结束。
2、逐步回归分析的主要计算步骤(1) 确定检验值在进行逐步回归计算前要确定检验每个变量是否显若的检验水平, 以作为引人或剔除变量的标准。
值都近似相等。
故为方便起见,可取一个定数F*作为F检验的标准。
2. 计算每个变量的均数 j、离均差平方和(l ii、l jj),每两个变量的离均差积和l ij,以及相关系数r ij,并以求得的rij为元素列出原始相关矩阵R(0)(阵中r ij(0)=r ij):以后每引入或剔除一个变量都计为一步运算。
设R(0)经L步所得的R(L)为对于每一步,R(L)均同样按式(2)变换成R(L+1)。
设引入或剔除的变量为Xg(g为该变量的下标),按式(2)作变换Lg,则R(L)成R(L+1)时,两矩阵中的各元素rij,有如下关系式:3. 选自变量。
(1) 引入未选量。
按式(3)计算各未选量的偏回归平方和V j(L+1),找出其中最大者,记作Va(L+1),就它所对应的自变量Xa按式(4)作F检验:式中m′为已引入变量的个数。
当F1>F*时引入变量X a,并对R(L)按式(2)作变换La,得R(L+1);当F1≤F*时挑选变量工作就此结束。
(2)剔除已选量。
引入新变量后,对原先引入的已选量分别计算其偏回归平方和Vj(L):找出V j(L)中最小者,记作Vb(L)。
就Vb(L)所对应的自变量X b按式(6)作F检验。
当F2≤F*时,剔除Xb,并对R(L)按式(2)作变换Lb得R(L+1);下一步对其余已选量再按式(5)、(6)求Vj并作F检验,直到已选量中没有可剔除时为止;当F2>F*时,已选量都不能被剔除,于是再考虑从未选量中能否引入新变量。
如此反复进行到第L步,若已选量都不能被剔除,未选量都不能引入时,逐步运算结束。
4. 求回归方程。
由相关矩阵R(L)求得的回归方程称为标准回归方程,式中b′j是标准偏回归系数,按式(7)求得。
b'j=rj.m+1(L)。
(7)实用中多元线性回归方程常用变量Xj的原单位,因此须再按式(8)求化成原单位后X j的偏回归系数b j,=l YY,即Y的离均差平方和,l jj为X j的离均差平方和。
逐步回归分析字体[大][中][小]逐步回归是多元回归中用以选择自变量的一种常用方法。
本条目重点介绍的是一种“向前法”。
此法的基本思想是:将自变量逐个地引入方程,引入的条件是该自变量的偏回归平方和在未选入的自变量(未选量)中是最大的,并经F检验是有显著性的。
另一方面,每引入一个新变量,要对先前已选入方程的变量(已选量)逐个进行F检验,将偏回归平方和最小且无显著性的变量剔除出方程,直至方程外的自变量不能再引入,方程中的自变量不能再剔除为止。
另一种是“向后法”,它的基本思想是:首先建立包括全部自变量的回归方程,然后逐步地剔除变量,先对每一自变量作F(或t)检验,剔除无显著性的变量中偏回归平方和最小的自变量,重新建立方程。
接着对方程外的自变量逐个进行F检验,将偏回归平方和最大且有显著性的变量引入方程。
重复上述过程,直至方程中的所有自变量都有显著性而方程外的自变量都没有显著性为止(例见条目“多元线性回归”例1、2)。
此法在自变量不多,特别是无显著性的自变量不多时可以使用。
与一般多元回归相比,用逐步回归法求得的回归方程有如下优点:它所含的自变量个数较少,便于应用;它的剩余标准差也较小,方程的稳定性较好; 由于每步都作检验,因而保证了方程中的所有自变量都是有显著性的。
逐步回归分析的主要用途是:(1)建立一个自变量个数较少的多元线性回归方程。
它和一般多元回归方程的用途一样,可用于描述某些因素与某一医学现象间的数量关系,疾病的预测预报,辅助诊断等等。
(2) 因素分析。
它有助于从大量因素中把对某一医学现象作用显著的因素或因素组找出来,因此在病因分析、疗效分析中有着广泛的应用。
但通常还须兼用“向前法”、“向后法”,并适当多采用几个F 检验的界值水准,结合专业分析,从中选定比较正确的结果。
求回归方程的方法步骤如下:设有含量为n的样本,对每个观察单位观察了m个自变量X j(j=1,2,…m)和一个应变量Y(可记为X m+1),得原始数据如表1。
逐步回归分析结果解读
一步回归分析是通过研究因变量Y和自变量X的关系来对研究对象的特征进行分析。
可以检验自变量中哪个变量对因变量(即结果)有影响,以及影响程度有多大,从而决定用哪几个自变量去预测因变量。
一步回归分析结果的解读一般包括以下三个方面:
一是研究自变量与因变量的相关性。
这一步回归结果中会列出每一个自变量的协整系数,可以清楚的知道每一个自变量与因变量相关性的大小,从而选择有用的因素用于预测结果。
二是建立统计模型。
研究的过程中,要构建一个定性和定量数据分析的统计模型来描述自变量和因变量之间的线性关系,同时也能准确预测因变量的值。
三是验证统计模型。
一步回归结果中也记录着一系列的统计检验,如F检验,偏差平方和,R方,可以用于检验回归模型的整体拟合水平,也可以更好的研究自变量与因变量之间的相关关系,判断回归模型可否用于预测因变量。
总的来说,从一步回归分析的结果来解读,可以了解自变量和因变量之间的关系,构建一个统计模型来准确预测因变量的值,还可以通过一系列的统计检验来验证回归模型的有效性。
逐步回归分析法及其应用逐步回归分析法是一种广泛应用于统计学和数据分析领域的统计技术,它被用来探索变量之间的关系,以及预测和解释数据的模式。
逐步回归分析法通过逐步添加变量和移除变量,找到最优的变量组合来解释因变量,同时使模型的复杂性最小化。
本文将介绍逐步回归分析法的基本原理、应用场景、案例分析以及需要注意的事项。
逐步回归分析法的基本原理逐步回归分析法基于最小二乘回归,通过向前逐步添加变量和向后逐步移除变量来建立最优的回归模型。
它通过构造一个评价函数,如AIC (Akaike Information Criterion)或BIC (Bayesian Information Criterion),来评估模型的复杂度和拟合度。
逐步回归分析法的目标是找到一个既能解释因变量又能使模型复杂性最小的最优模型。
应用场景逐步回归分析法适用于多种数据分析和统计学应用场景,例如:因果分析:通过逐步回归分析法,可以找出哪些自变量对因变量有显著影响,以及它们的影响程度。
特征选择:在处理高维数据时,逐步回归分析法可以用来选择最重要的特征,以便构建更有效的模型。
时间序列预测:通过逐步回归分析法,可以建立时间序列预测模型,预测未来的趋势和变化。
案例分析以一个实际的例子来说明逐步回归分析法的应用。
假设我们有一个数据集包含了汽车的各项性能指标(如马力、油耗、车重等)和汽车的销售价格。
我们想知道哪些性能指标最能影响汽车的销售价格。
我们使用逐步回归分析法建立一个价格预测模型。
通过向前逐步添加变量和向后逐步移除变量,我们最终找到了一个最优模型,该模型仅包含两个变量:马力(Horsepower)和车重(Weight)。
这个模型告诉我们,汽车的马力越大、车重越轻,销售价格就越高。
接下来,我们使用残差和斜率进一步分析这个模型。
残差是实际值与模型预测值之间的差异,斜率是因变量对自变量的变化率。
通过观察残差和斜率,我们可以得出以下马力对价格的影响比车重更大,因为马力的斜率大于车重的斜率。
逐步多元回归分析步骤逐步多元回归分析是一种常用的统计分析方法,用于确定多个自变量与因变量之间的关系。
它通过逐步引入自变量,以逐步提高回归模型的准确性和预测能力。
本文将介绍逐步多元回归分析的步骤,包括问题定义、变量选择、模型拟合和模型评估等。
步骤一:问题定义在进行逐步多元回归分析之前,首先需要明确研究的目的和问题。
这包括确定因变量和自变量,并明确要解决的研究问题。
例如,我们可以研究一些产品的销量与价格、广告投入和市场规模之间的关系,以确定哪些因素对销量影响最大。
步骤二:变量选择变量选择是逐步多元回归分析中最关键的一步。
在这一步中,我们需要选择适当的自变量,并逐步引入到回归模型中。
通常,可以使用相关系数矩阵和散点图等方法来评估自变量与因变量之间的关系。
选择自变量时,应尽量选择与因变量显著相关的变量,并避免选择高度相关的自变量(即多重共线性)。
步骤三:模型拟合在确定自变量后,我们需要建立逐步多元回归模型。
一种常用的方法是逐步回归法,它分为前向选择和后向剔除两种方法。
前向选择从空模型开始,依次引入自变量,每次只引入一个自变量,并根据F检验或t检验判断是否显著,直到所有自变量都引入到模型中。
反之,后向剔除从包含所有自变量的模型开始,逐步剔除不显著的自变量,直到所有的自变量都被剔除。
步骤四:模型评估在模型拟合之后,需要对模型进行评估,以确定模型的拟合程度和预测能力。
通常,可以使用拟合优度指标(如R方和调整的R方)来评估模型的拟合程度。
此外,还可以使用共线性统计量来检测模型中是否存在多重共线性问题。
如果模型存在多重共线性,应采取相应的措施,如去除高度相关的自变量或使用主成分分析等。
步骤五:模型解释和应用最后,在模型评估之后,我们可以对模型进行解释,并根据模型的结果进行相应的应用。
在解释模型时,应关注各个自变量的回归系数和显著性水平,以确定自变量对因变量的影响。
在应用模型时,可以使用模型进行预测、推断和决策等。
逐步回归分析在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x 之间可能不完全相互独立的,可能有种种互作关系。
在这种情况下可用逐步回归分析,进行x 因子的筛选,这样建立的多元回归模型预测效果会更较好。
逐步回归分析,首先要建立因变量y 与自变量x 之间的总回归方程,再对总的方程及每—个自变量进行假设检验。
当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某—个自变量对y 影响不显著时,应该把它剔除,重新建立不包含该因子的多元回归方程。
筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。
回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值的误差也愈小,模拟的效果愈好。
但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。
因此在多元回归模型中,选择适宜的变量数目尤为重要。
逐步回归在病虫预报中的应用实例:以陕西省长武地区1984~1995年的烟蚜传毒病情资料、相关虫情和气象资料为例(数据见DATA6.xls ),建立蚜传病毒病情指数的逐步回归模型,说明逐步回归分析的具体步骤。
影响蚜传病毒病情指数的虫情因子和气象因子一共有21个,通过逐步回归,从中选出对病情指数影响显著的因子,从而建立相应的模型。
对1984~1995年的病情指数进行回检,然后对1996~1998年的病情进行预报,再检验预报的效果。
变量说明如下:y :历年病情指数 x1:前年冬季油菜越冬时的蚜量(头/株) x2:前年冬季极端气温 x3:5月份最高气温 x4:5月份最低气温 x11:5月份均温 x12:5月份降水量 x13:6月份均温 x14:6月份降水量 x15:第一次蚜迁高峰期百株烟草有翅蚜量x5:3~5月份降水量x6:4~6月份降水量x7:3~5月份均温x8:4~6月份均温x9:4月份降水量x10:4月份均温x16:5月份油菜百株蚜量x17:7月份降水量x18:8月份降水量x19:7月份均温x20:8月份均温x21:元月均温1)准备分析数据在SPSS数据编辑窗口中,用“File→Open→Data”命令,打开“DATA6.xls”数据文件。
网络流行度预测中的逐步回归分析方法介绍随着互联网的发展,网络流行度成为了许多人关注的焦点。
无论是企业还是个人,都需要了解网络流行度的趋势和变化,以便采取相应的措施。
而逐步回归分析方法则是一种常用的预测网络流行度的方法之一。
一、什么是逐步回归分析方法逐步回归分析是一种多元线性回归分析的变体方法。
其核心思想是通过不断迭代的方式,根据自变量的重要性逐步选择进入模型的自变量,从而构建预测模型。
与传统的回归分析方法相比,逐步回归分析方法能够更好地解释变量之间的关系,提高模型的准确度。
二、逐步回归分析方法的步骤1. 数据收集与预处理:首先收集网络流行度的相关数据,并对数据进行预处理,包括去除异常值、处理缺失值等。
为了提高分析的准确性,还需要进行数据标准化处理,以消除不同指标之间的量纲影响。
2. 初步模型构建:在收集和预处理数据后,需要建立一个初步的回归模型。
可以根据经验知识或领域专家的建议,选择一些可能与网络流行度相关的自变量。
3. 自变量选择:逐步回归分析的核心就在于逐步选择自变量。
在初步模型的基础上,通过计算每个自变量的重要性指标,然后选择重要性最高的自变量加入模型中。
这个过程会不断迭代,直到模型中的所有自变量都被选择进去。
4. 模型评估与优化:在自变量选择的过程中,需要对模型进行评估和优化。
可以使用相关系数、均方误差等指标来评估模型的拟合效果,如果模型效果不佳,则可以尝试剔除一些不重要的自变量或者添加新的自变量。
5. 预测与应用:当模型构建完毕后,就可以使用模型来进行网络流行度的预测和分析。
根据输入的自变量数值,可以得到对应的网络流行度数值。
除了预测,逐步回归分析方法还可以通过分析模型中各个自变量的系数大小,来判断不同自变量对网络流行度的贡献程度。
三、逐步回归分析方法的优势和应用场景逐步回归分析方法相较于传统的回归分析方法具有以下优势:1. 自变量选择更加准确:逐步回归分析方法通过逐渐调整模型中的自变量,能够更准确地选择与网络流行度相关的自变量,提高模型的准确度和解释力。