回归分析(完整版)
- 格式:ppt
- 大小:481.50 KB
- 文档页数:38
可编辑修改精选全文完整版回归分析法用相关系来表示变量x和y线性相关密切程度,那么r数值为多大时才能说明它们之间线性关系是密切的?这需要数理统计中的显著性检验给予证明。
三、显著性检验是来用以说明变量之间线性相关的密切程度如何,或是用以说明所求得的回归模型有无实用价值。
为说明相关系数的概念,先观察图2-3。
回归分析的检验包括:相关系数的显著性检验、回归方程的显著性检验、回归系数的显著性检等,它们是从不同角度对回归方程的预测效能进行验证的。
关于显著性检验这涉及有关数理统计的内容,为此我们作一下简要回顾。
数理统计的主要内容包括:·参数估计;·假设检验;·方差分析等。
(1)相关系数检验。
相关系数的检验,需要借助于相关系数检验表来进行,这种表是统计学家按照有关的数学理论制定出的。
在相关系数检验表中,有两个参数需要说明。
1)f —称为自由度。
其含义为:如果有n个变量 x1,x2,...x n相互独立,且无任何线性约束条件,则变量的自由度个数为 f=n ,一般情况下有:f=n —约束条件式数对于一元线性回归,参数a,b要通过观测数据求出,有两个约束式,则失去两个自由度,因此 f=n-2 ,n为散点(观测点或统计数据点)个数。
2) a —称为显著性水平。
取值为0.01或0.05。
而1-a 称为置信度或置信概率,即表示对某种结论的可信程度。
当 a 取值为0.05时,则1-a 为0.95,这表示在100次试验中,约有5次犯错误(小概率事件发生)。
判断两个随机变量x,y间有无线性相关关系的方法是:首先根据要求确定某一显著性水平 a ,由散点数n计算出 f ,然后根据 a , f 利用相关系数检验表查出相关系数的临界值 r a,最后将计算出的相关系数r的绝对值与临界值 r a相比较。
r a表示在一定的置信概率下,所要求的相关系数起码值。
若,表示这两个随机变量之间存在线性相关关系;若,表示这两个随机变量之间线性相关程度不够密切。
回归分析方法总结全面回归分析是一种统计分析方法,用于研究变量之间的作用关系。
它由一个或多个自变量和一个或多个因变量组成。
回归分析的目的是通过收集样本数据,探讨自变量对因变量的影响关系,即原因对结果的影响程度。
建立一个适当的数学模型来反映变量之间关系的统计分析方法称为回归方程。
回归分析可以分为一元回归分析和多元回归分析。
一元回归分析是对一个因变量和一个自变量建立回归方程。
多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。
回归方程的表现形式不同,可以分为线性回归分析和非线性回归分析。
线性回归分析适用于变量之间是线性相关关系的情况,而非线性回归分析适用于变量之间是非线性相关关系的情况。
回归分析的主要内容包括建立相关关系的数学表达式、依据回归方程进行回归预测和计算估计标准误差。
建立适当的数学模型可以反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。
依据回归方程进行回归预测可以估计出因变量可能发生相应变化的数值。
计算估计标准误差可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性。
一元线性回归分析是对一个因变量和一个自变量建立线性回归方程的方法。
它的特点是两个变量不是对等关系,必须明确自变量和因变量。
如果x和y两个变量无明显因果关系,则存在着两个回归方程:一个是以x为自变量,y为因变量建立的回归方程;另一个是以y为自变量,x为因变量建立的回归方程。
若绘出图形,则是两条斜率不同的回归直线。
回归方程的估计值;n——样本容量。
在计算估计标准误差时,需要注意样本容量的大小,样本容量越大,估计标准误差越小,反之亦然。
5.检验回归方程的显著性建立回归方程后,需要对其进行显著性检验,以确定回归方程是否具有统计学意义。
常用的检验方法是F检验和t检验。
F检验是通过比较回归平方和与残差平方和的大小关系,来判断回归方程的显著性。
若F值大于临界值,则拒绝原假设,认为回归方程显著。
t检验则是通过对回归系数进行假设检验,来判断回归方程中各回归系数的显著性。
线性回归分析的基本步骤步骤一、建立模型知识点:1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。
Y X U β=+特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。
例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下:作出其散点图如下:②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。
总体回归方程的求法:以例1的数据为例,求出E (Y |X 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。
如将()()222777100,|77200,|137X E Y X X E Y X ====和代入()01|i i i E Y X X ββ=+可得:01001177100171372000.6ββββββ=+=⎧⎧⇒⎨⎨=+=⎩⎩以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为:③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。
如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型ˆY X e β=+就称为样本回归模型。
④样本回归方程(线):通过样本数据估计出ˆβ,得到样本观测值的拟合值与解释变量之间的关系方程ˆˆY X β=称为样本回归方程。
如下图所示:⑤四者之间的关系:ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之上,它描述的是因变量Y和自变量X之间的近似于真实的非确定型依赖关系。
回归分析方法总结全面第一篇:回归分析方法总结全面一、什么是回归分析回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。
回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。
回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。
利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。
二、回归分析的种类1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。
多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。
2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。
若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。
三、回归分析的主要内容1.建立相关关系的数学表达式。
依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。
2.依据回归方程进行回归预测。
由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。
因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。
3.计算估计标准误差。
通过估计标准误差这一指标,可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性,还可利用估计标准误差对因变量估计值进行在一定把握程度条件下的区间估计。
四、一元线性回归分析1.一元线性回归分析的特点1)两个变量不是对等关系,必须明确自变量和因变量。