3-1立体表面上点的投影
- 格式:doc
- 大小:114.00 KB
- 文档页数:8
第3章立体的投影一、本章重点:1.平面立体和曲面立体投影的画法,及立体表面点的投影。
2.立体与平面相交其交线的画法,既求截交线。
3.两回转体轴线垂直相交其交线的画法。
4.立体的尺寸标注。
二、本章难点:1.圆球和圆环的投影及表面上点的投影。
2.圆锥、圆球被平面截切后,截交线的画法。
3.求作相贯线。
三、本章要求:通过本章的学习,要掌握基本体的三面投影画法,基本体表面点的投影,能够分析和绘制常见的截交线和两回转体轴线相交时的相贯线,掌握立体的尺寸标注的方法。
四、本章内容:§3-1 平面立体的投影一、棱柱棱柱体由若干个棱面及顶面和底面组成,它的棱线相互平行。
顶面和底面为正多边形的直棱柱,称为正棱柱。
常见的棱柱有三棱柱、四棱柱、六棱柱等。
1.棱柱的三视图2.棱柱表面上的点二、棱锥棱锥的底面为多边形,各侧面为若干具有公共顶点的三角形。
从棱锥顶点到底面的距离叫做锥高。
当棱锥底面为正多边形,各侧面是全等的等腰三角形时,称为正棱锥。
常见的棱锥有三棱锥、四棱锥、六棱锥。
1. 棱锥的三视图2.棱锥表面上的点§3-2曲面立体的投影曲面立体的表面是由一母线绕定轴旋转而成的,故称曲面立体,也称为回转体。
常见的回转体有圆柱、圆锥、圆球和圆环等。
一、圆柱1.圆柱面的形成圆柱面可看作一条直线AB围绕与它平行的轴线OO回转而成。
OO称为回转轴,直线AB称为母线,母线转至任一位置时称为素线。
这种由一条母线绕轴回转而形成的表面称为回转面,由回转面构成的立体称为回转体。
2.圆柱的三视图3.圆柱表面上的点二、圆锥1.圆锥面的形成圆锥面可看作由一条直母线围绕和它相交的轴线回转而成。
2.圆锥的三视图3.圆锥表面上的点三、圆球1.圆球面的形成圆球面可看作一圆(母线),围绕它的直径回转而成。
2.圆球的三视图3.圆球表面上的点四、圆环1.圆环的形成圆环面可看作由一圆母线,绕一与圆平面共面但不通过圆心的轴线回转而成。
图中的回转轴是铅垂线。
学习要求§3.1 点的投影§3.2 两点的相对位置第三章点的投影本章目录第3章点的投影点是构成形体的最基本元素,熟练掌握点的投影规律及其它们之间的相互关系,为学习直线、平面、曲线、曲面及立体等打下良好的基础。
本章将讨论本章学习基本要求熟练熟悉两点的相对位置的判别。
能熟练判别重影点的可见性。
3.1.1 点在三面投影体系中的投影如图3-1(a)所示,将空间点A放置在三面投影体系中,通过点A分别向H面、V面和W面作垂直投射线,则三条投射线与三个投影面的交点分别为点A在H面的投影a;在V面的投影a‘及在W面的投影a″。
a、a′、a″即为空间点A的三面投影。
展开投影面体系后,如图3-1(b)所示。
动画演示点在三投影面中的表示:空间点用英文大写字母(如A、B…)表示,其投影用小写字母(如H面用a、b…)表示,V面投影用相应小写字母并在右上方加一撇(如a′、b′…)表示,W 面投影用相应小写字母并在右上方加两撇(如a″、b″…3.1.2 点的投影特征点在三面投影体系中的投影特征为:1.点的投影连线垂直于相应投影轴,如aa′⊥ox 。
a′a″⊥oz2.点的投影到投影轴的距离等于空间点到相邻投影面的距离。
a′a x = a″a y w=Aaaa x =a″a z =Aa′aa yH =a′a z =Aa″。
由上可知,点到某一投影面的距离等于点在另两投影面上的投影到相应投影轴的距离。
动画演示例3-1 已知点A 的水平投影a 及正面投影a′,求作点A 的侧面投影a″(图3-2a)。
分析:根据点在三面投影体系中投影特征:a′a″⊥oz ;aa x = a″az ,即可求得a″。
作图:(1)过a′作oz 轴的垂线;(2)量取aa x =a″a z ,a″即为所求,如图3-2(b )所示。
用图3-2(c )、(d )、(e )所示的三种方法也可求得同一结果。
动画演示3.1.3 特殊位置的点当点距某一投影面的距离为零时,该点便在此投影面内。