立体表面上点、直线、平面的投影
- 格式:doc
- 大小:95.50 KB
- 文档页数:3
江苏省XY中等专业学校2022-2023-1教案教学内容1.点的三面投影习惯上我们将空间点用大写的字母表示,其投影用相应的小写字母表示。
空间点A的位置确定后,那么它的三面投影(a、a′、a″)投影就确定了,反之如果空间一点的三面投影确定,则空间点的位置也就确定。
2.点的三面投影规律(教师要注意解释)aa′⊥OX;a′a″⊥OZ;a′a yH= a″a yE点的投影规律与“长对正、宽相等和高平齐”是一致的。
3.点的投影和直角坐标系的关系A(x、y、z)空间A点到W面的距离为坐标X,即A→W=x;空间A点到V面的距离为坐标X,即A→V=y;空间A点到H面的距离为坐标X,即A→H=z。
空间点A与其坐标(x、y、z)式一一对应的关系,同样空间点A与其三面投影(a、a′、a″)也是一一对应的关系,从而我们可以得出点的投影与点的坐标也存在着一定的联系。
即水平投影a→(x、y);正面投影a→(x、z);侧面投影a→(y、z)教学内容教师提问:点的三个坐标值与点的位置有什么样的关系?即坐标值为多少时,点在空间?点在投影面上?点在投影轴上?点在原点?例题1:已知点A的V面投影a'和W面投影a X,求作H面投影a。
分析:根据点的投影规律可知:aa′⊥OX,过a′点作OX轴的垂线a′a X,所求a必定在a'a X的延长线上。
由aa X= a″a z,可确定a在a′a X延长线上的位置。
作图:(1)过a′作a′a X⊥OX并延长,如图2-14b所示。
(2)量取aa X= a″a z,可求得a。
也可如图2-14c 所示,利用45。
线作图。
4.两点的相对位置前面我们已经知道点在空间里的位置可由其坐标值来确定,假如空间里有两点A和B,那么它们之间的位置关系又如何确定?空间两点的位置关系可由两点的同名坐标值的差来确定。
如xA>xB、yB>yA、zA>zB,则点A在点B的左边、后面和上面。
例题2:已知空间点C(16,5,6),点D在点C 之右10mm、之前7mm、之上8mm,求作C、D两点的三面投影,如图2-16所示。
电子教案
常州轻工职业技术学院
课程名称:机械制图№ 05
教案附页
教学过程
及
时间分配主要教学内容
教学方法
的运用
45min
五、平面的投影
1.平面与投影面的相对位置也有三种
a.投影面平行面正平面
水平面
侧平面
投影特性:平行于哪个投影面,在该投影面的投影为反映实形的线框;其他两面投影为平行于投影轴的积聚性的线段。
简称为:两线(正)一框(真实性)
b.投影面垂直面正垂面
铅垂面
侧垂面
投影特性:垂直于哪个投影面,在哪个投影面的投影积聚为一条直线,该直线倾斜于投影轴;其他两面投影为类似性的线框。
c.一般位置平面
三线框(类似性)
讲解启发引导。