倾斜角与斜率概念的探究知识讲解
- 格式:ppt
- 大小:568.50 KB
- 文档页数:11
高二数学直线的倾斜角与斜率难题讲解好嘞,今天咱们聊聊高二数学中一个既简单又有点儿“拗口”的话题——直线的倾斜角和斜率。
听起来是不是有点儿复杂?但咱们可以轻松搞定这个问题,顺便加点儿乐趣,绝对让你听得津津有味。
先来个简单的概念吧,斜率就是直线倾斜的程度。
想象一下,你在爬山,坡度越陡,爬起来就越费劲。
斜率其实就是表示这个坡度的一个数值,斜率越大,直线越陡,咱们爬起来就越累。
而倾斜角,就是直线和水平线之间的夹角,这个角度越大,说明直线越“干脆利落”,走起来就像在飞一样。
这俩东西是密切相关的,斜率和倾斜角之间有个小关系,挺简单的,咱们后面再聊。
有没有想过,生活中处处有直线?比如说,站在高楼大厦的阳台上,俯瞰街道,那些道路就像一条条直线,直直的,真的很让人开心。
再比如,骑自行车的时候,路面越平坦,你骑得就越快,那条直线的斜率简直就是你的速度。
没错,数学其实和生活息息相关,真的是一门活的学科!来,咱们先谈谈斜率。
它的计算方法很简单,就是直线上的两个点之间的纵坐标差和横坐标差的比值。
就像你在运动会上,跑了100米,用时10秒,咱们就可以算出你的“速度”。
假如你从点A到点B,A的坐标是(x1, y1),B的坐标是(x2, y2),那么斜率就是 (y2 y1) / (x2 x1)。
听起来是不是挺简单?就像在厨房里做菜,先准备好食材,然后一步一步来,最后就能做出美味的佳肴。
再说说倾斜角。
倾斜角用符号θ表示,跟三角函数有关系。
大家还记得三角函数吗?咱们的好朋友正弦、余弦和正切,正切就是斜率的另一种表现形式。
我们可以用tan(θ) = 斜率这个公式来联系它们。
也就是说,如果你知道了斜率,想求倾斜角,没问题!只需用反正切函数,算出来的角度就能告诉你这条线到底有多“拼”。
这样一来,不仅能找到直线的斜率,还能找到直线的倾斜角,简直就像一举两得!说到这里,大家肯定会问,这些数学公式有什么用呢?在咱们的日常生活中,倾斜角和斜率真的是无处不在。
直线的倾斜角、斜率及方程知识点总结
一、倾斜角:
重点:取值范围:0≤a<180°
二、斜率k:
1、当a≠90°时,斜率k=tana;
2、当a=90°时,斜率k不存在;(联系正切函数的定义域去理解)
3、两点P1(x1,y1),P2(x2,y2)间的斜率公式:
理解:
①两点间斜率要求x1≠x2,因为当x1=x2时,直线垂直于x轴,倾斜角为90°,斜率k不存在;
②当x1≠x2且y1=y2时,直线垂直于y轴,倾斜角为0°,斜率k=0
三、各表达式之间的区别与联系:
四、斜率k与截距b对直线位置的影响:
1、k对直线位置的影响:
①当k>0时,直线向右上方倾斜;
②当k<0时,直线向右下方倾斜;
③当k=0时,此时倾斜角为0,直线平行与x轴;
④当k不存在时,此时倾斜角为90°,直线与y轴平行。
2、b对直线位置的影响:
①当b>0时,直线与y轴正半轴相交;
②当b<0时,直线与y轴负半轴相交;
③当b=0时,直线过原点。
《直线的倾斜角与斜率》教案及说明教案说明:本教案旨在帮助学生理解直线的倾斜角与斜率的概念,掌握计算方法,并能应用于解决实际问题。
通过本教案的学习,学生应能理解直线的倾斜角与斜率之间的关系,并能运用斜率计算直线的倾斜角,反之亦然。
教学目标:1. 理解直线的倾斜角的概念。
2. 掌握计算直线的斜率的方法。
3. 理解直线的斜率与倾斜角之间的关系。
4. 能运用直线的斜率和倾斜角解决实际问题。
教学内容:一、直线的倾斜角1. 直线的倾斜角的定义。
2. 直线的倾斜角的计算方法。
二、直线的斜率1. 直线的斜率的定义。
2. 直线的斜率的计算方法。
三、直线的斜率与倾斜角之间的关系1. 斜率与倾斜角的定义及关系。
2. 斜率与倾斜角的计算方法。
四、运用直线的斜率和倾斜角解决实际问题1. 运用斜率和倾斜角计算直线的长度。
2. 运用斜率和倾斜角计算直线的交点。
五、巩固练习1. 计算给定直线的斜率和倾斜角。
2. 解决实际问题,运用直线的斜率和倾斜角。
教学方法:1. 采用直观演示法,通过图形和实例引导学生理解直线的倾斜角和斜率的概念。
2. 采用讲解法,讲解直线的倾斜角和斜率的计算方法。
3. 采用实践法,让学生通过实际问题解决来运用直线的斜率和倾斜角。
教学评估:1. 课堂练习:学生在课堂上完成给定的练习题,检验对直线的倾斜角和斜率的理解和应用能力。
2. 课后作业:布置相关的作业题,巩固学生对直线的倾斜角和斜率的掌握。
3. 考试:设置有关直线的倾斜角和斜率的考试题目,全面评估学生的掌握情况。
教学资源:1. 教学PPT:提供直观的图形和实例,帮助学生理解直线的倾斜角和斜率的概念。
2. 练习题库:提供丰富的练习题,供学生课堂练习和课后作业。
3. 实际问题案例:提供实际问题,供学生解决,运用直线的斜率和倾斜角。
教学步骤:一、直线的倾斜角1. 引入直线的倾斜角的概念,引导学生理解直线的倾斜角的意义。
2. 讲解直线的倾斜角的计算方法,引导学生掌握计算直线的倾斜角的方法。
《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。
3. 让学生能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
4. 求直线的倾斜角和斜率的方法。
5. 直线的倾斜角和斜率在实际问题中的应用。
三、教学重点与难点:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。
2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。
3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。
3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。
4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。
5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。
6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。
说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。
在教学过程中,注意启发学生的思维,培养学生的动手能力。
六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。
2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。
3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。
七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。
2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。
直线的倾斜角与斜率知识点直线是数学中最基本的图形之一,在几何学和代数学中都有广泛的应用。
直线的倾斜角和斜率是描述直线特征的重要概念,在解决直线问题时起到了至关重要的作用。
本文将介绍直线的倾斜角和斜率的概念、计算方法和应用场景。
一、直线的倾斜角直线的倾斜角是指直线与正 x 轴之间的夹角。
它通常用角度或弧度来度量。
倾斜角可以表达直线的上升或下降趋势,以及直线的陡峭程度。
倾斜角的取值范围为 [-90°, 90°] 或 [-π/2, π/2],其中正值表示线段向右上方倾斜,负值表示线段向右下方倾斜。
要计算直线的倾斜角,需要从直线上选择两个确定点。
假设直线的两个点分别是 P1(x1, y1) 和 P2(x2, y2),则倾斜角可以通过求解以下公式得出:倾斜角 = arctan((y2 - y1) / (x2 - x1))其中,arctan 表示反正切函数,计算结果可以用角度或弧度来表示。
二、直线的斜率直线的斜率是用来表示直线上点之间的变化率的数值。
斜率可以告诉我们直线的陡峭程度和方向。
通常情况下,斜率被定义为直线上任意两点之间纵坐标的差值与横坐标的差值之比。
对于直线上的两个点 P1(x1, y1) 和 P2(x2, y2),斜率可以通过以下公式来计算:斜率 = (y2 - y1) / (x2 - x1)斜率可以用分数形式来表示,分母表示直线上两个点之间的水平距离,分子表示两个点之间的垂直距离。
斜率也可以是整数、小数或无穷大。
当斜率为正时,直线向上倾斜;当斜率为负时,直线向下倾斜;当斜率为0时,表示直线为水平线。
三、直线倾斜角与斜率的转换关系直线的倾斜角和斜率有一个重要的转换关系。
斜率可以通过直线的倾斜角计算得到,也可以通过斜率计算得到直线的倾斜角。
通过倾斜角计算斜率的公式如下:斜率 = tan(倾斜角)其中,tan 表示正切函数。
通过斜率计算倾斜角的公式如下:倾斜角 = arctan(斜率)这两个公式可以帮助我们在直线的描述中灵活地使用斜率和倾斜角。
《直线的倾斜角与斜率》教案及说明一、教学目标:1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角:定义、求法。
2. 斜率与倾斜角的关系:正切函数的应用。
3. 直线的斜率:定义、求法。
4. 实际问题中的应用:求直线的倾斜角和斜率。
三、教学重点与难点:1. 重点:直线的倾斜角的概念、斜率与倾斜角的关系。
2. 难点:直线的斜率的求法、实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解直线的倾斜角和斜率的定义及求法。
2. 利用例题,演示直线的倾斜角和斜率的计算过程。
3. 引导学生运用直线的倾斜角和斜率解决实际问题。
五、教学过程:1. 导入新课:回顾直线的倾斜角和斜率的概念,引导学生思考两者之间的关系。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解求法,举例说明。
3. 讲解斜率与倾斜角的关系:引入正切函数,讲解斜率与倾斜角的关系,举例说明。
4. 讲解直线的斜率:介绍直线的斜率的定义,讲解求法,举例说明。
6. 课堂练习:布置练习题,巩固所学知识。
8. 布置作业:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂讲解:评估学生对直线的倾斜角和斜率概念的理解程度,观察学生能否正确求解直线的倾斜角和斜率。
2. 课堂练习:评估学生运用直线的倾斜角和斜率解决实际问题的能力,观察学生是否能够正确计算和应用。
3. 课后作业:评估学生对直线的倾斜角和斜率知识的掌握程度,检查学生是否能够独立完成相关练习。
七、教学反思:1. 反思教学内容:根据学生的学习情况,调整直线的倾斜角和斜率的教学内容,确保学生能够理解和掌握。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高学生的学习兴趣和参与度。
八、教学拓展:1. 直线的倾斜角和斜率在实际应用中的例子:如工程测量、物理学中的运动分析等。
高二数学倾斜角与斜率知识点数学是一门抽象而精确的科学,其中许多概念和知识点都与我们日常生活息息相关。
在高二数学学习中,倾斜角与斜率是重要的概念之一。
本文将详细介绍倾斜角与斜率的概念及其应用。
一、倾斜角的定义与性质倾斜角,也称为斜率角,是指直线相对于水平线或者坡面的倾斜程度。
在直角坐标系中,可以通过斜率来计算倾斜角。
具体来说,若直线的斜率为k,则其倾斜角θ满足tanθ=k。
倾斜角具有以下性质:1. 垂直线的倾斜角为90度或π/2弧度;水平线的倾斜角为0度或0弧度。
2. 同一条直线上的两个不同点的连线的倾斜角相等。
3. 平行的直线具有相同的倾斜角。
4. 相互垂直的两条直线的倾斜角之积为-1。
二、斜率的计算与性质斜率描述了直线上各点间的变化率,可以理解为直线的倾斜程度。
在直角坐标系中,设直线通过两个点P(x₁, y₁)和Q(x₂, y₂),则直线的斜率k满足k=(y₂-y₁)/(x₂-x₁)。
斜率具有以下性质:1. 垂直线的斜率不存在;水平线的斜率为0。
2. 同一条直线上的所有点的斜率相等。
3. 平行的直线具有相同的斜率。
4. 若直线的斜率为k,则与水平线的倾斜角θ满足tanθ=k。
三、倾斜角与斜率的应用倾斜角和斜率在实际问题中具有广泛的应用,特别是在几何图形和物理学中。
1. 图形的倾斜角:通过计算两点的坐标可以确定直线的斜率,从而求得直线相对于水平线的倾斜角。
这对于理解图形的形状和方向非常重要。
2. 道路的坡度:道路的坡度实际上就是道路的倾斜角。
通过计算两个位置的高度差和水平距离,可以求得坡度,从而了解道路的陡峭程度,对工程设计和施工有着重要意义。
3. 物体的运动:对于物体在直角坐标系中的运动,可以通过斜率来描述速度的变化。
倾斜角和斜率帮助我们理解物体在不同位置上的速度和方向。
总结:倾斜角与斜率是高二数学中的重要概念,其应用广泛。
倾斜角可以通过斜率来计算,用于描述直线相对于水平线的倾斜程度。
斜率则是描述直线各点间变化率的指标。
直线的倾斜角与斜率基础知识梳理1.倾斜角定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向直线l 向上方向之间所成的角叫做直线l 的倾斜角. 范围:)180,0[0.2.斜率(1)斜率计算:倾斜角为α,)90(tan 0≠=ααk ;经过两点))(,(),,(21222111x x y x P y x P ≠的直线的斜率为1212x x y y k --=. α=0° 0°<α<90° α=90° 90°<α<180°k =0 k >0 斜率不存在 k <0 一、选择题1.关于直线的倾斜角和斜率,下列哪些说法是正确的( )A .任一条直线都有倾斜角,也都有斜率B .直线的倾斜角越大,它的斜率就越大C .平行于x 轴的直线的倾斜角是0°D .两直线的倾斜角相等,它们的斜率也相等2.一条直线l 与x 轴相交,其向上的方向与y 轴正方向所成的角为α(0°<α<90°),则其倾斜角为( )A .αB .180°-αC .180°-α或90°-αD .90°+α或90°-α3.直线l 经过第二、四象限,则直线l 的倾斜角α的范围是( )A .0°≤α<90°B .90°≤α<180°C .90°<α<180°D .0°≤α<180°4.已知直线l 的倾斜角为150°,则直线l 的斜率为( )A .33B . 3C .-33D .-3 5.如图,直线l 的倾斜角为( )A .60°B .120°C .30°D .150°6.已知直线的斜率为-3,则它的倾斜角为( )A .60°B .120°C .60°或120°D .150°7.若直线l 经过点M (2,3),N (4,3),则直线l 的倾斜角为( )A .0°B .30°C .60°D .90°8.斜率为2的直线经过点(3,5),(a,7),(-1,b )三点,则a ,b 的值是( )A .a =4,b =0B .a =-4,b =-3C .a =4,b =-3D .a =-4,b =39.经过两点A (2,1),B (1,m )的直线的倾斜角为锐角,则m 的取值范围是( )A .m <1B .m >-1C .-1<m <1D .m >1或m <-110、直线x=1的倾斜角和斜率分别是( )A.45°,1B.135°,-1C.90°,不存在D.180°,不存在11.在平面直角坐标系中,正△ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为()A.-B.0 C D.二、填空题12.如果直线l1与l2关于x轴对称,且与x轴相交,它们的倾斜角分别为α1,α2,则α1与α2的关系是________.13.过点(0,1)与(2,3)的直线的斜率为_________,倾斜角为__________.14.若过点(a,-2)和(4,a)的直线斜率不存在,则a=__________.15.已知点A(-m,5),B(1,3m),且直线AB的倾斜角为135°,则实数m=__________.16.已知点A(1,2),点P在x轴上,且直线P A的倾斜角为135°,则点P的坐标为__________.17.已知点A(3,4),点B在坐标轴上,且直线BA的斜率为2,则点B的坐标为__________.18.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则11a b+的值等于________.三、解答题19.已知坐标平面内三点A(-1,1),B(1,1),C(2,3+1).求直线AB,BC,AC的斜率和倾斜角.20.(1)已知:A(2,2),B(4,0),C(0,4),求证:A,B,C三点共线;(2)若三点A(2,-3),B(4,3),C(5,m)在同一条直线上,求m的值.21.(1)经过两点A(-m,6),B(m+1,3m)的直线倾斜角的正切值为2,求m的值;(2)一束光线从点A(-2,3)射入,经过x轴上点P反射后,通过点B(5,7),求点P的坐标.。
直线的知识点总结一、 直线的倾斜角与斜率:1. 直线的倾斜角:1) 定义:当直线与x 轴相交时,沿x 轴正方向为始边,按照逆时针方向旋转所得的最小正角;规定:与x 轴平行或重合的直线的倾斜角为0; 2) 范围:直线l 的倾斜角α的范围是0απ≤<; 2. 直线的斜率:1) 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
斜率反映直线与轴的倾斜程度。
2) 公式: tan k α=a.当[)οο90,0∈α时,0≥k ,当α=0°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当()οο180,90∈α时,0<k ,随着α的增大,斜率k 也增大; 当ο90=α 时,k 不存在,即直线与y 轴平行或者重合.这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.b. 如果知道直线上两点()11,A x y ,()22,B x y2112122112()AB y y y y k x x x x x x --==≠-- 注意:(1)特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k=0. (2)k 与A 、B 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
c .设直线():00l Ax By C B ++=≠ 则A k B=-注:三点A ,B ,C 共线,则AB BC k k =二、直线的方程:①点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.注意:当直线的倾斜角为0°时,k=0,直线的方程是y =y 0。
当直线的倾斜角为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 0,所以它的方程是x =x 0。
专题04直线的倾斜角与斜率、直线方程问题【知识梳理】1、倾斜角和斜率(1)直线的倾斜角的概念:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时,规定0a =°.(2)倾斜角α的取值范围: 0180a 埃<.当直线l 与x 轴垂直时, 90a =°.(3)直线的斜率:一条直线的倾斜角9(0)a a 拱的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是k tan a=①当直线l 与x 轴平行或重合时,0a =°,00k tan =°=;②当直线l 与x 轴垂直时, 90a =°,k 不存在.由此可知,一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在.(4)直线的斜率公式:给定两点()()11122212,,,,P x y P x y x x ¹,用两点的坐标来表示直线12P P 的斜率:21122112=y y y y k x x x x --=--2、两条直线的平行与垂直(1)两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即1212//l l k k Û=注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果12k k =,那么一定有12//l l (2)两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即1212=1l l k k Û×^-3、直线方程的不同形式间的关系直线方程的五种形式的比较如下表:名称方程的形式常数的几何意义适用范围点斜式()11y y k x x -=-11(,)x y 是直线上一定点,k 是斜率不垂直于x 轴斜截式y kx b =+k 是斜率,b 是直线在y 轴上的截距不垂直于x 轴两点112121y y x x y y x x --=--11(,)x y ,22(,)x y 是直线上两定不垂直于x 轴和y考点2:直线与线段的相交问题考点3:两直线平行问题考点4:两直线垂直问题考点5:五种直线方程考点6:直线与坐标轴围成三角形问题考点7:直线过定点问题【典型例题】考点1:倾斜角与斜率1.(2021·福建宁德·高二期中)已知点()20A ,,(3B ,则直线AB 的倾斜角为()A .30︒B .60︒C .120︒D .150︒【答案】B【解析】由题得直线AB 的斜率k =设直线的倾斜角为tan [0,180)ααα∴=∈,,所以=60α.故选:B2.(2020·北京十五中高二期中)如图,直线1234,,,l l l l 的斜率分别为1234,,,k k k k ,则()A .4321k k k k <<<B .3421k k k k <<<C .4312k k k k <<<D .3412k k k k <<<【解析】由斜率的定义知,21430k k k k >>>>.故选:D.3.(2022·全国·高二期中)已知直线斜率为k,且1k -≤≤α的取值范围是().A .ππ3π0,,324⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .π3π0,,π34⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭C .ππ3π0,,624⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .π3π0,,π64⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭【答案】B【解析】由题意,直线l 的倾斜角为α,则[)0,πα∈,因为1k -≤≤,即1tan α-≤≤结合正切函数的性质,可得π3π0,,π34α⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭.故选:B .4.(2021·湖北宜昌·高二期中)若倾斜角为3π的直线过(A ,()2,B a 两点,则实数=a ()A 32BC.D.【答案】C【解析】因为直线的倾斜角为3π,所以直线的斜率为tan3π=12a=-a =;故选:C5.(2021·广东·兴宁市叶塘中学高二期中)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m =()A .12B .12-C .2-D .2【答案】A【解析】由于()2,3A -、()3,2B -、1(,)2C m 三点共线,则ABAC k k =,即32312322m +-=--+,解得12m =.6.(多选题)(2021·湖南·怀化五中高二期中)在下列四个命题中,错误的有()A .坐标平面内的任何一条直线均有倾斜角和斜率B .直线的倾斜角的取值范围是[0,π]C .若一条直线的斜率为1,则此直线的倾斜角为45度D .若一条直线的倾斜角为α,则此直线的斜率为tanα【答案】ABD 【解析】对于A ,倾斜角为90的直线斜率不存在所以A 错误对于B直线的倾斜角的取值范围为[)0,p 所以B 错误对于C因为tan 1α=且[)0,απ∈,所以4πα=所以C 正确对于D倾斜角为90的直线斜率不存在所以D 错误故选:ABD7.(多选题)(2021·江苏南通·高二期中)若经过()1,1A a a -+和()3,B a 的直线的倾斜角为钝角,则实数a 的值不可能为()A .2-B .0C .1D .2【答案】BCD【解析】据题意可知110132AB a a k a a+-==<----,即20a +>,所以2a >-.故选:BCD .8.(2022·上海·华东师范大学附属东昌中学高二期中)已知直线l 0y -=,则直线l 的倾斜角为_________.【答案】60°0y -=60°.故答案为:60°.9.(2022·上海市大同中学高二期中)已知直线l 经过原点,且与直线y =x +1的夹角为45°,则直线l 的方程为______.【答案】0x =或0y =【解析】直线1y x =+的斜率为1,倾斜角为45︒,直线l 与直线1y x =+的夹角为45︒,所以直线l 的倾斜角为0︒或90︒,所以直线l 的方程为0x =或0y =.故答案为:0x =或0y =10.(2022·上海市控江中学高二期中)设a ∈R ,若直线l 经过点(,2)A a 、(1,3)B a +,则直线l 的斜率是___________.【答案】1【解析】因为直线l 经过点(,2)A a 、(1,3)B a +,所以直线l 的斜率是3211k a a-==+-,故答案为:111.(2021·新疆·八一中学高二期中)已知点A (2,-1),B (3,m ),若13m ⎡⎤∈--⎢⎥⎣⎦,则直线AB 的倾斜角的取值范围为__________.【答案】50,,36πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭【解析】设直线AB 的倾斜角为α,∵点A (2,-1),B (3,m ),∴直线AB 的斜率1132m k m +==+-,又∵13m ⎡⎤∈--⎢⎥⎣⎦,∴13m ⎡+∈-⎢⎣,即k 的取值范围为⎡⎢⎣,即t an α⎡∈⎢⎣,又∵α∈[0,π),∴50,,36ππαπ⎡⎤⎡⎫∈⎪⎢⎥⎢⎣⎦⎣⎭,故答案为:50,,36πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭.考点2:直线与线段的相交问题12.(2021·福建三明·高二期中)已知A (3,-1),B (1,2),P (x ,y )是线段AB 上的动点,则yx的取值范围是_______.【答案】[13-,2]【解析】因为A (3,-1),B (1,2),P (x ,y )是线段AB 上的动点,所以yx表示直线OP 的斜率.如下图.因为直线OA 的斜率为101303--=--,直线OB 的斜率为20210-=-.所以y x 的取值范围是1[,2]3-.故答案为:1[,2]3-13.(2021·广东·汕头市潮南区陈店实验学校高二期中)已知两点()1,2A -,()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为()A .π3π,44⎡⎤⎢⎥⎣⎦B .ππ30,,42π4⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C .π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦【答案】C【解析】如图所示,直线PA 的斜率21110PA k -+==--,直线PB 的斜率11120PB k +==-.由图可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-,因此直线l 的倾斜角的取值范围是π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭.故选:C14.(2021·广东·华中师范大学海丰附属学校高二期中)设点()2,3A -,()3,2B ,若直线ax +y +2=0与线段AB 有交点,则a 的取值范围是()A .54,,23⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .45,32⎛⎫- ⎪⎝⎭C .54,23⎡⎤-⎢⎥⎣⎦D .45,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】D【解析】∵直线20ax y ++=过定点(0,2)C -,且52AC k =-,43BC k =,由图可知直线与线段AB 有交点时,斜率a -满足43a ≤-或52a -≤-,解得45,,32a ⎛⎤⎡⎫-∞-⋃+∞ ⎪⎢⎝⎦⎣∈⎭,故选:D15.(2021·山东济宁·高二期中)设点()4,3A -,()2,2B --,直线l 过点()1,1P 且与线段AB 相交,则l 的斜率k 的取值范围是()A .1k ³或4k ≤-B .1k ³或43k ≤-C .41k -≤≤D .413k -≤≤-【答案】B【解析】如图所示:因为1(3)41(2),11431(2)PA PB k k ----==-==---,所以当直线l 过点()1,1P 且与线段AB 相交时,l 的斜率k 的取值范围是1k ³或43k ≤-,故选:B16.(2021·天津市嘉诚中学高二期中)已知两点(2,3)M -,(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .344k ≤≤D .344k -≤≤【答案】A【解析】如图,要使直线l 与线段MN 相交,则应满足PM k k ≤或PN k k ≥,因为13412PM k +==--,123134PN k +==+,所以4k ≤-或34k ≥.故选:A.17.(2021·广西·防城港市防城中学高二期中)经过点()0,1P -作直线l ,若直线l 与连接()1,2A -,()2,1B 的线段总有公共点,则直线l 的斜率k 的取值范围为()A .[]1,1-B .(][),11,-∞-⋃+∞C .[)1,1-D .()[),11,∞∞--⋃+【答案】A【解析】根据题意画图如下:2(1)1(1)1,11020PA PB k k -----==-==--,在射线PA 逆时针旋转至射线PB 时斜率逐渐变大,直线l 与线段AB 总有公共点,所以11k -≤≤.故选:A.18.(2021·北京·景山学校高二期中)已知直线l :20ax y --=和点(2,1)P ,(3,2)Q -,若l 与线段PQ 相交,则实数a 的取值范围是()A .3243a -≤≤B .34a ≤-或23a ≥C .4332a -≤≤D .43a ≤-或32a ≥【答案】D【解析】由直线l :20ax y --=可知直线l 必过定点A (0,2)-,且直线l 的斜率为a ,如下图所示:由斜率公式可知,直线AP 的斜率为213022AP k --==-,直线AQ 的斜率为2240(3)3AQ k --==---,若l 与线段PQ 相交,只需要32AP a k ≥=或43AQ a k ≤=-,故实数a 的取值范围是43a ≤-或32a ≥.故选:D.19.(2021·陕西安康·高二期中(理))已知点2)A ,(4,3)B -,直线l 过点(0,1)P 且与线段AB 相交,则直线l 的倾斜角的取值范围是()A .π3π0,,π64⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭B .π3π,64⎡⎤⎢⎥⎣⎦C .π5π0,,π36⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭D .π5π,36⎡⎤⎢⎣⎦【答案】A【解析】如图,斜率33PA k ==,1(3)104PB k --==--,结合图象可知当直线l 与线段AB 相交时,其倾斜角的取值范围是π3π0,,π64⎡⎤⎡⎫⎪⎢⎢⎣⎦⎣⎭.故选:A20.(2021·广东·广州六中高二期中)已知点(1,1)A -,(3,1)B ,直线l 过点(1,3)C ,且,A B 两点在直线l 的同侧,则直线l 斜率的取值范围是()A .(1,1)-B .(,1)(1,)-∞-+∞C .(,1)(0,1)-∞-D .(1,0)(1,)-È+¥【答案】A【解析】由题意,点(1,1)A -,(3,1)B ,(1,3)C ,根据斜率公式,可得1AC k =,1EC k =-,如图所示,要使得直线l 过点(1,3)C ,且,A B 两点在直线l 的同侧,则直线l 斜率的取值范围是(1,1)-.故选:A.考点3:两直线平行问题21.(2022·四川·泸县五中高二期中(文))已知直线1:210l x my ++=与2:310l x y --=平行,则 m 的值为__________.【答案】23-【解析】因为直线1:210l x my ++=与2:310l x y --=平行,所以当0m =时,两条直线不平行,不符合题意;当0m ≠时,23m -=,解得23m =-.故答案为:23-.22.(2020·四川巴中·高二期中(文))若直线1:10l x ay +-=与直线()2:2330l a x y -++=平行,则实数a 的值为______.【答案】3【解析】因为1:10l x ay +-=与直线()2:2330l a x y -++=平行,所以()13201330a a a ⎧⨯--=⎨-⨯-≠⎩,解得3a =,故答案为:3.23.(2022·上海市宝山中学高二期中)“直线1l 与2l 平行”是“直线1l 与2l 的斜率相等”的()条件A .充分非必要B .必要非充分C .充要D .既非充分又非必要【答案】D【解析】充分性:直线1l 与2l 平行,但是1l 和2l 都没有斜率,即当1l 和2l 都垂直于x 轴时,1l 与2l 仍然平行,但是,此时不满足直线1l 与2l 的斜率相等,故充分性不成立;必要性:直线1l 与2l 的斜率相等,则直线1l 与2l 平行或重合,故必要性不成立;综上,“直线1l 与2l 平行”是“直线1l 与2l 的斜率相等”的既非充分又非必要条件.故选:D24.(2021·浙江台州·高二期中)直线()1:110l a x y -++=,()2:4210l x a y ++-=,则“2a =”是“12l l //”的()条件A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】C【解析】①充分性:当2a =时,1:10l x y ++=,2:4410l x y +-=,所以1l 与2l 斜率相等,且截距不相等,故12l l //,所以充分;②必要性:()1:110l a x y -++=,()2:4210l x a y ++-=,当12l l //时,则()()1240a a -+-=,解得:2a =或3a =-,当3a =-时,两直线重合,所以3a =-舍去,当2a =时,两直线斜率相等且截距不相等,符合题意,所以必要.所以“2a =”是“12l l //”的充要条件故选:C.25.(2021·河北·石家庄市第二十二中学高二期中)下列说法正确的是()A .平行的两条直线的斜率一定存在且相等B .平行的两条直线的倾斜角一定相等C .垂直的两条直线的斜率之积为1-D .只有斜率相等的两条直线才一定平行【答案】B【解析】因为两条直线倾斜角为90︒时,两条直线平行,但是没有斜率,故A 不正确;平行的两条直线的倾斜角一定相等,故B 正确;垂直的两条直线的斜率存在时,斜率之积为1-;当一条直线斜率不存在,另一条直线斜率为0时两直线也垂直,故C 不正确;斜率不存在的两条直线也能够平行,故D 不正确;故选:B .26.(2021·福建·浦城县教师进修学校高二期中)已知A (-1,2),B (1,3),C (0,-2),点D 使AD ⊥BC ,AB ∥CD ,则点D 的坐标为()A .94(,)77-B .5413(,)77C .3813(,)33D .385(,)77【答案】D【解析】设D (x ,y ),∵AD ⊥BC ,∴21y x -+·3(2)10---=-1,∴x +5y -9=0,∵AB ∥CD ,∴2y x +=321(1)---,∴x -2y -4=0,由得590240x y x y +-=⎧⎨--=⎩,38757x y ⎧=⎪⎪⎨⎪=⎪⎩,故选:D.考点4:两直线垂直问题27.(2021·吉林油田高级中学高二期中)下列方程所表示的直线中,一定相互垂直的一对是()A .210ax y +-=与220x ay ++=B .6430x y --=与10150x y c ++=C .2370x y +-=与4650x y -+=D .340x y b -+=与340x y +=【答案】B【解析】A :a =0时,两直线分别为:1,12y x ==-,此时它们垂直;当a ≠0时,它们斜率之积为212a a ⎛⎫-⋅-= ⎪⎝⎭,则它们不垂直;故两条直线不一定垂直;B :两直线斜率之积为:6101415⎛⎫⨯-=- ⎪⎝⎭,故两直线垂直;C :两直线斜率之积为:2441369-⨯=-≠-,故两直线不垂直;D :两直线斜率之积为:33914416⎛⎫⨯-=-≠- ⎪⎝⎭,故两条直线不垂直;故选:B.28.(2021·贵州·黔西南州金成实验学校高二期中(理))已知直线1l :10mx y -+=,2l :()210mx m y ++-=,若12l l ⊥,则m =_________.【答案】2或1-【解析】由题意2(2)0m m -+=,解得1m =-或2m =.故答案为:2或1-.29.(2022·上海市行知中学高二期中)若直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直,则=a ______.【答案】2-【解析】因为直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直,所以()()1210a a ⨯+-⨯+=,解得2a =-,故答案为:2-.30.(2022·全国·高二期中)已知直线1:20l ax y +=,直线()2:10l a x y --=,若12l l ⊥,则实数a 的值为______.【答案】2a =或1a =-【解析】因为12l l ⊥,所以(1)2(1)0a a -+⨯-=,解得2a =或1a =-,故答案为:2a =或1a =-31.(2021·广东·珠海市第二中学高二期中)已知直线150l y --=,若直线21l l ⊥,则直线2l 的倾斜角大小为_____________.【答案】56π【解析】直线方程150l y --=1l k ∴=21l l ⊥121l l k k ∴=-233l k ∴=-∴直线2l 的倾斜角大小为56π故答案为:56π32.(多选题)(2021·河北·石家庄市第六中学高二期中)已知直线1l 的倾斜角为30°,2l 经过点M ,(2,0)N ,则1l 与2l 的位置关系为()A .平行B .垂直C .相交D .不确定【答案】BC【解析】因为直线1l 的倾斜角为30°,所以直线1l 的斜率130tan k =︒又2l 经过点M ,(2,0)N ,所以直线2l 的斜率212k ==-,故(1213k k ==-,所以1l ⊥2l 故选:BC考点5:五种直线方程33.(2018·江西·南昌市第八中学高二期中(理))直线l 过点()1,2-,且在两坐标轴上截距相等,则直线l 的一般式方程为___________.【答案】10x y +-=,20x y +=【解析】显然直线l 的斜率存在且不为0,设l :()21y k x -=+令0x =,则2y k =+;令0y =,则2kx k+=-依题意,22kk k+-=+解之得1k =-或2k =-当1k =-时,l :10x y +-=当2k =-时,l :20x y +=故答案为:10x y +-=,20x y +=34.(2021·广东·新会陈经纶中学高二期中)过点(1,2)P 且与直线20x y --=平行的直线方程为___________________.【答案】10x y -+=【解析】因为过点(1,2)P 的直线与直线20x y --=平行,所以设直线方程为:0x y m -+=,因为直线过点(1,2)P ,120m ∴-+=所以1m =,故直线方程为:10x y -+=,故答案为:10x y -+=35.(2021·浙江省杭州学军中学高二期中)经过点(3,2)A -,且在x 轴上的截距等于y 轴上截距的2倍的直线方程为___________.【答案】230x y +=或210x y +-=.【解析】若直线在x 轴上的截距为0,设直线方程为y kx =,因为直线经过点(3,2)A -,所以23k =-,即23k =-,所以直线方程为23y x =-,即230x y +=;若直线在x 轴上的截距不为0,设直线方程为12x yb b+=,因为直线经过点(3,2)A -,所以3212b b -+=,解得12b =,所以直线方程为210x y +-=.所以所求直线方程方程为230x y +=或210x y +-=.故答案为:230x y +=或210x y +-=.36.(2021·湖南·怀化五中高二期中)求符合下列条件的直线l 的方程:(1)过点A (﹣1,﹣3),且斜率为14-;(2)A (1,3),B (2,1))求直线AB 的方程;(3)经过点P (3,2)且在两坐标轴上的截距相等.【解析】(1)所求直线过点()1,3A --,且斜率为14-,()1314y x ∴+=-+,即4130x y ++=.(2)所求直线过()()1,32,1A B ,,31212AB k -∴==--,()321y x ∴-=--,即250x y +-=.(3)当直线过原点时,设直线方程为y kx =,直线过P 点()3,2,23k ∴=,直线方程为23y x =,即2x -3y =0;当直线不过原点时,设直线方程为1x ya a+=,将点()3,2P 代入上式得,321a a+=,解得5a =,故直线的方程为50x y +-=,综上,直线方程为230x y -=或50x y +-=.37.(2021·福建·福州三中高二期中)已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在的直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0(1)求直线AC 的方程,(2)求直线BC 的方程【解析】(1)由AC 边上的高BH 所在直线方程为250x y --=,知2AC k =-,又()5,1A ,AC ∴边所在直线方程为()125,y x -=--即2110x y +-=(2)设点B 的坐标为()00,x y ,则线段AB 的中点为0051(,22x y M ++在直线250x y --=上,.即001(5)50,2y x ++--=整理得00210,x y --=又点B 在直线BH 上,00250,x y ∴--=两者联立可解得0013x y =-⎧⎨=-⎩,即()1,3B --3(3)64(1)5BC k --==--∴∴直线BC 的方程63(4),5y x -=-即6590x y --=38.(2021·河北·唐山市第十一中学高二期中)求满足下列条件的直线方程:(1)过点()4,2P -,倾斜角为45°;(2)过两点()()1,3,2,5A B .【解析】(1)所求直线方程为()2tan 454y x +=︒⨯-,即6y x =-.(2)所求直线方程为315321y x --=--,即21y x =+.39.(2021·北京·北师大二附中未来科技城学校高二期中)经过点()1,2,且倾斜角为45°的直线方程是()A .3y x =-B .21y x -=-C .(3)y x =--D .(3)y x =-+【答案】B【解析】因为所求直线的倾斜角为45°,所以所求直线的斜率tan 451k =︒=,所以直线方程为21y x -=-.故A ,C ,D 错误.故选:B.40.(2022·全国·高二期中)已知直线l 过()2,1A -,并与两坐标轴截得等腰三角形,那么直线l 的方程是().A .10x y --=或30x y +-=B .10x y --=或30x y -+=C .10x y ++=或30x y -+=D .10x y ++=或30x y +-=【答案】C【解析】由题意可知,所求直线的倾斜角为45︒或135︒,即直线的斜率为1或-1,故直线方程为12y x -=+或1(2)y x -=-+,即30x y -+=或10x y ++=.故选:C.41.(2022·江苏南通·高二期中)已知直线l 经过点()2,3-,且与直线250x y --=垂直,则直线l 的方程为()A .240x y ++=B .240x y +-=C .280x y --=D .280x y -+=【答案】A【解析】直线250x y --=的斜率为2,直线l 与之垂直,则12l k =-,又l 过点(2,3)P -,所以直线方程为13(2)2y x +=--,即240x y ++=.故选:A .42.(2021·江苏苏州·高二期中)已知三角形的顶点()4,1A ,()6,3B -,()3,0C .(1)求AC 边上的高BH 所在的直线方程;(2)求AB 边上的中线CD 所在的直线方程.【解析】(1)由于()4,1A ,()3,0C ,所以01134AC k -==-,因为BH 为AC 边上的高,有1AC BH k k ⋅=-,所以1BH k =-,又BH 过点()6,3B -,所以有()316y x ⎡⎤-=-⨯--⎣⎦,所以BH 所在直线的方程为30x y ++=.(2)由于()4,1A ,()6,3B -,所以AB 的中点()4613,22⎛⎫+-+ ⎪⎝⎭,即()1,2-,又()3,0C ,所以201132CD k -==---,又因为过点()3,0C ,所以有()1032y x -=-⨯-,所以CD 所在直线的方程为230x y +-=.考点6:直线与坐标轴围成三角形问题43.(2020·上海·格致中学高二期中)过点()3,1的直线分别与x 轴、y 轴的正半轴交于A 、B 两点,则AOB (O 为坐标原点)面积取得最小值时直线方程为____________.【答案】360x y +-=【解析】易知直线AB 的斜率存在且不为零,设直线AB 的方程为()13y k x -=-,即13y kx k =+-.在直线AB 的方程中,令0x =,可得13=-y k ;令0y =,可得31k x k-=.所以,点31,0k A k -⎛⎫⎪⎝⎭、()0,13B k -.由已知条件可得310130k k k -⎧>⎪⎨⎪->⎩,解得0k <.OAB 的面积为()1311111369626222k S k k k k⎡-⎛⎫=⨯-⨯=--≥⨯+=⎢ ⎝⎭⎢⎣.当且仅当()190k k k-=-<时,即当13k =-时,等号成立,所以,直线AB 的方程为123y x =-+,即360x y +-=.故答案为:360x y +-=.44.(2021·江苏扬州·高二期中)已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为___________.【答案】660x y -+=或660x y --=【解析】设直线l 的方程为1x y a b +=,则132ab =,且16b a -=,解得61a b =⎧⎨=-⎩或者61a b =-⎧⎨=⎩,∴直线l 的方程为161x y+=-或161x y +=-,即660x y -+=或660x y --=.故答案为:660x y -+=或660x y --=.45.(2021·湖北荆州·高二期中)(1)求过点()4,3-且在两坐标轴上截距相等的直线l 的方程;(2)设直线l 的方程为()()120a x y a a ++--=∈R ,若1a >-,直线l 与x ,y 轴分别交于M ,N 两点,O 为坐标原点,求OMN 面积取最小值时,直线l 的方程.【解析】(1)当直线不过原点时,设l 的方程为xa +y a=1,∵点()4,3-在直线上,∴4a+3a-=1,解得1a =,所以直线方程为x +y -1=0;当直线过原点时,直线斜率34k =-,∴直线的方程为34y x =-,即3x +4y =0.综上知,所求直线方程为x +y -1=0或3x +4y =0.(2)∵1a >-,∴M 2(,0)1a a ++,()0,2N a +,∴()12221OMNa Sa a +=⋅⋅++=()211121a a ++⎡⎤⎣⎦⨯+=121121a a ⎛⎫+++ ⎪+⎝⎭≥2,当且仅当a +1=11a +,即a =0时等号成立.故所求直线l 的方程为x +y -2=0.46.(2021·福建福州·高二期中)已知直线l 过点()3,2M .(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若l 与x 轴正半轴的交点为A ,与y 轴正半轴的交点为B ,求AOB (O 为坐标原点)面积的最小值.【解析】(1)当直线经过原点时,直线的斜率为23k =,所以直线的方程为23y x=,即230x y -=;当直线不过原点时,设直线的方程为x y a +=,代入点()3,2M 可得5a =,所以所求直线方程为5x y +=,即50x y +-=.综上可得,所求直线方程为:230x y -=或50x y +-=.(2)依题意,设点(),0A a ,()0,B b (0a >,0b >),直线AB 的方程为1x ya b+=,又点()3,2M 在直线AB 上,于是有321a b+=,利用基本不等式321a b =+≥24ab ≥,当且仅当6a =,4b =时等号成立,1122AOB S ab ∴=≥V ,即AOB 的面积的最小值为12.47.(2021·河北省盐山中学高二期中)已知直线l 过点()1,2P -.(1)若直线l 在两坐标轴上截距和为零,求l 方程;(2)设直线l 的斜率0k >,直线l 与两坐标轴交点别为A B 、,求AOB 面积最小值.【解析】(1)因为直线l 在两坐标轴上截距和为零,所以直线l 斜率存在且不为0,故不妨设斜率为k ,则直线l 方程为()21y k x -=+,所以直线在,x y 坐标轴上截距分别为21k--,2k +,所以2120k k--++=,整理得220k k +-=,解得2k =-或1k =所以直线l 方程为20x y +=或30x y -+=.(2)由(1)知()21,0,0,2A B k k ⎛⎫--+ ⎪⎝⎭,因为0k >,所以AOB 面积为()1214112444222S k k k k ⎛⎫⎛⎫⎛⎫=⨯++=⨯++≥⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4k k=,即2k =时等号成立,所以AOB 面积最小值448.(2020·安徽·合肥市庐阳高级中学高二期中(文))直线l 经过点()1,2A ,(1)直线l 与两个坐标轴围成的三角形的面积是4的直线方程.(2)直线l 与两个坐标轴的正半轴围成的三角形面积最小时的直线方程.【解析】设直线方程为1x y a b +=,由直线l 经过点()1,2A 可得121a b+=,(1)由题可得121142a b ab ⎧+=⎪⎪⎨⎪=⎪⎩,解得24a b =⎧⎨=⎩,24a b ⎧=--⎪⎨=-+⎪⎩24a b ⎧=-+⎪⎨=--⎪⎩则直线方程为1,124x y +=;(2)()10,02S ab a b =>>,121+=≥a b 8ab ≥,4S ≥当且仅当2a =,4b =时面积取最小值,则直线方程为124x y +=.考点7:直线过定点问题49.(2021·广东·揭阳华侨高中高二期中)直线10mx y m +--=恒过定点__________.【答案】(1,1)【解析】将直线方程10mx y m +--=等价于()()110m x y -+-=,令1010x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩,所以直线10mx y m +--=恒过定点(1,1).故答案为:(1,1).50.(2021·四川·泸州老窖天府中学高二期中(理))直线(1)y k x =-过定点_________________.【答案】()1,0【解析】直线(1)y k x =-,令10x -=,得1,0x y ==,所以直线(1)y k x =-过定点()1,0,故答案为:()1,0.51.(2021·福建泉州·高二期中)已知点()10P -,在直线l ()20ax y a a R +-+=∈:上的射影为M ,点N (0,3),则线段MN 长度的最小值为______________【答案】4【解析】直线l ()20ax y a a R +-+=∈:,即(1)20x a y -++=,令10x -=,且20y +=,得出x 1,y 2==-,所以直线l 恒过定点(1,2)Q -,由于点()10P -,在直线l 上的射影为M ,即90PMQ ∠=,所以点M 在以PQ 为直径的圆上,该圆的圆心为PQ 的中点()0,1C -,且半径N 到圆心C 的距离为4NC ==,所以线段MN 的最小值为4NC r -=故答案为:452.(2021·湖南·益阳平高学校高二期中)设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值()A .B .C .3D .6【答案】D【解析】由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以()()22222||||||120318PA PB AB +==--+-=,因为222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭,所以6P A PB +=,当且仅当||||3PA PB ==时取等号.故选:D.53.(2021·四川·遂宁中学高二期中(理))过定点M 的直线20ax y +-=与过定点N 的直线420x ay a -+-=交于点P ,则·PM PN 的最大值为()A .1B .3C .4D .2【答案】C 【解析】由题意可知,动直线20ax y +-=经过定点()0,2M ,动直线420x ay a -+-=即()240x y a -+-+=,经过定点()2,4N ,∵过定点M 的直线20ax y +-=与过定点N 的直线420x ay a -+-=始终垂直,P 又是两条直线的交点,∴PM PN ⊥,∴2228PM PN MN +==.故2242PM PN PM PN +⋅≤=(当且仅当2PM PN ==时取“=”).故选:C .。