有内在联系.
2
0
. P (x ,y )x
思考1 在平面直角坐标系中,设直线 的倾斜角为.已知直线 经过(0,0),( ,1),
那么与点, 的坐标有什么关系?
tan =
1
3
=
3
=
3
y
−
−
0
l
.
. P(
,1)
x
2
1
1
1
2
思考2 在平面直角坐标系中,设直线 的倾斜角为α. 如果直线 经过1 −1,1 ,2 ( 2,0) ,
无关,tan =
1
2
1
2
新知讲解
斜率的定义:
我们把一条直线的倾斜角 的正切值叫做这条直线的斜率. 斜率常用小写字母 表示,即
k=tan( ≠ 900 )
说明:1.斜率与倾斜角的对应关系
图示
倾斜角(范围)
α=0°
0°<α<90°
90°பைடு நூலகம்
α=_____
90°<α<180°
斜率(范围)
0
_____
.P
α2
x
l
以及它的 倾斜角 .
说明 :在平面直角坐标系中,每一条直线都有一个确定的倾斜角,而且方向相同的直线,其倾斜程度
相同,倾斜角相等,方向不同的直线,其倾斜程度不同,倾斜角不相等.因此,我们可以用倾斜角表示
一条直线的倾斜程度,也就表示了直线的方向.
即时巩固
1.下列各图中表示直线倾斜角的为( C )
那么α与1 , 2 的坐标又有什么关系?
P2P1 (1 2 ,1 0) (1 2 ,1)
OP P2P1 (1 2 ,1)