高等代数【北大版】7.6
- 格式:ppt
- 大小:701.00 KB
- 文档页数:26
高等代数北大版第章习题参考答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数北京大学第三版简介高等代数是数学中的一门重要课程,是数学的基础和核心课程之一。
北京大学的高等代数课程被广泛认为是高等代数学习中的经典教材之一。
本文将介绍北京大学第三版《高等代数》教材的主要内容和特点。
内容概述《高等代数北京大学第三版》是一本教材,由北京大学吴传荣、李建平合著。
全书共分为十五章,每章围绕一个主题展开讲解。
主要内容包括线性方程和矩阵、行列式、矩阵的相抵标准形及其应用、线性空间与线性变换、特征值与特征向量、正交线性变换与二次型、群、环和域等。
特点1. 详细而全面的内容本教材详细介绍了高等代数的各个重要概念和定理,并给出了充分的例题和习题来帮助学生掌握和巩固所学的知识。
每章的开头都给出了该章的学习目标,使学生能够清晰地了解该章的所学内容,并有针对性地学习。
2. 理论与实践相结合教材既注重理论的讲解,又注重实践的应用。
通过大量的实例和应用,教材将抽象的数学概念与实际问题相结合。
这有助于学生更好地理解数学原理,并在实践中灵活运用。
3. 重点突出,条理清晰教材对于重要的概念和定理都做了重点强调,并给出了详细的证明过程和推导。
条理清晰的内容安排使学生能够逐步建立起完整的知识体系。
4. 多样化的习题除了充分的例题之外,本书还提供了丰富的习题,涵盖了各个难度级别。
习题中融入了不同类型的问题,既能巩固基础知识,又能培养学生的综合运用能力。
习题的解答也提供了详细的步骤和解析,方便学生检查自己的答案和思考方式。
5. 适用范围广泛这本教材不仅适合北京大学的高等代数课程,也适合其他高校的相应课程。
无论是学生还是教师,都能从本书中获得很多学习和教学的帮助。
总结《高等代数北京大学第三版》是一本经典的高等代数教材,内容详细而全面,既注重理论讲解,又注重实际应用。
教材的特点包括多样化的习题和解答、重点突出、条理清晰以及适用范围广泛。
这本教材不仅帮助学生掌握高等代数的基本概念和定理,也培养了学生的分析问题和解决问题的能力。
第一学期第一次课第一章 代数学的经典课题§1 若干准备知识1.1.1 代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。
1.1.2 数域的定义定义(数域) 设K 是某些复数所组成的集合。
如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。
例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。
命题 任意数域K 都包括有理数域Q 。
证明 设K 为任意一个数域。
由定义可知,存在一个元素0≠∈a K a ,且。
于是K aa K a a ∈=∈-=10,。
进而∈∀m Z 0>,K m ∈+⋯⋯++=111。
最后,∈∀n m ,Z 0>,K n m ∈,K nm n m ∈-=-0。
这就证明了Q ⊆K 。
证毕。
1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ⋂;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ⋃;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。
定义(集合的映射) 设A 、B 为集合。
如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。
A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。
第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量;2)在线性空间V中,A其中V是一固定的向量;3)在P 322 中,A(,,)(,,)x1xxxxxx;2312334)在P 3中,A(,,)(2,,)x1xxxxxxx2312231;5)在P[x]中,A f(x)f(x1);6)在P[x]中,A()(),fxfx其中0 x P是一固定的数;07)把复数域上看作复数域上的线性空间,A。
nn中,A X=BXC其中B,CP 8)在P解1)当0时,是;当0时,不是。
nn是两个固定的矩阵.2)当0时,是;当0时,不是。
3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。
4)是.因取(x1,x2,x3),(y1,y2,y3),有A()=A(x1y1,x2y2,x3y3)=(2x12y1x2y2,x2y2x3y3,x1y1)=(2x1x2,x2x3,x1)(2y1y2,y2y3,y1)=A+A,A(k)A(kx1,kx2,kx3)(2kx1 k x2,k x2k x,3k x)1(2kx1 k x2,k x2k x,3k x)1=k A(),3故A是P上的线性变换。
5)是.因任取f(x)P[x],g(x)P[x],并令u(x)f(x)g(x)则A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)),再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。
6)是.因任取f(x)P[x],g(x)P[x]则.A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)),A(kf(x))kf(x0)k A(f(x))。
7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。
高等代数(北大版)第7章习题参考答案第七章 线性变换1.判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3)在P 3中,A ),,(),,(233221321x x x x x x x +=; 4)在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5)在P[x ]中,A )1()(+=x f x f ;6)在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数;7)把复数域上看作复数域上的线性空间, A ξξ=。
8)在P n n ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵.解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++-= A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g ,再令)()(x kf x v =则A=))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
《高等代数》课程教学总体安排一、课程名称:高等代数二、课程性质与类型:专业必修课,理论课三、课程总学时及学分:150学时,学分四、教学目的与要求:教学目的:高等代数是数学与应用数学专业必修基础课,也是一门重要主干课程,是中学代数的提高,也是近代数学的基础。
通过本课程的教学,使学生掌握高等代数的基本知识,基本方法,基本思路,适当地了解代数的一些历史,一些背景,以加深对中学数学的理解,获得独立分析和解决有关的理论和实际问题的能力,并为进一步学习其他后继课程:近世代数、微分方程、泛函分析等,以及将来从事教学,科研及其他实际工作打下基础。
教学基本要求:基本掌握全书的基本概念;能独立处理书后的绝大部分习题;通过本书抽象理论的学习,提高自学能力,数学思维,专业素质,以便阅读较深的文献。
五、教材及参考书目教材:张禾瑞,郝炳新著,高等代数,高等教育出版社,2007年6月第四版,ISBN:7-04-021465-9,主要参考书:[1] 北京大学数学系,高等代数,高等教育出版社,2003年7月第三版ISBN:7-04-011915-3[2] 李师正等编,高等代数解题方法与技巧,高等教育出版社,2004 年2月版ISBN:7-04-012942-6[3] 徐仲,陆全,张凯院,高等代数考研教案,西北工业大学出版社,2006年6月出版,ISBN:7-5612-2088-X六、考核方式及成绩计算方法期末进行闭卷考试,综合平时学习态度、课堂表现、平时作业确定学生学习成绩。
具体计算方法为:学科成绩=期末考试成绩×90%+平时成绩×10%七、课程教学日历第一章基本概念教学安排说明章节题目:§1.5数环数域学时分配:2学时。
教学时数为2学时本章教学目的与要求:掌握数环和数域概念,判别方法,理解有理数域的最小性。
其它:本章以自学为主,只讲授第五节课堂教学方案§1.5数环数域课程名称:§1.5数环数域授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:掌握数环和数域概念,判别方法,理解有理数域的最小性。