弹性力学问题中一个新的边界积分方程——自然边界积分方程
- 格式:pdf
- 大小:395.88 KB
- 文档页数:11
第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。
它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。
本章将介绍弹性力学的基本方程及有关的变分原理。
§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。
现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。
§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。
弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
文章编号: 1009 − 444X (2020)04 − 0305 − 09基于杂交基本解的正交各向异性材料热传导问题有限元法仇文凯 ,王克用(上海工程技术大学 机械与汽车工程学院,上海 201620)摘要:采用基于杂交基本解的有限元法(HFS-FEM )对二维正交各向异性材料进行热传导分析. 单元域内和单元边界上的温度分布由两个温度场独立描述. 采用基本解的线性组合来近似单元内部温度场,采用标准一维线单元形函数来定义网线温度场. 利用修正变分泛函和散度定理导得相应的有限元列式,通过2个算例与ABAQUS 结果对比,验证了该方法具有有效性. 数值结果表明,该方法在单元形状极度扭曲情形下仍能保持良好的精度,这是区别于传统有限元法的显著特点.关键词:热传导;有限元法;基本解;坐标变换;正交各向异性材料中图分类号: O 343.1 文献标志码: AHybrid Fundamental-Solution-Based FEM for Heat ConductionProblems in Orthotropic MaterialsQIU Wenkai ,WANG Keyong( School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China )Abstract :A heat conduction analysis of two-dimensional orthotropic materials was carried out by the hybrid fundamental-solution-based finite element method (HFS-FEM). Temperature distributions within the element domain and on the element boundary were independently described by two temperature fields. A linear combination of fundamental solutions was utilized to approximate the intra-element temperature field while standard one-dimensional shape functions were employed to define the frame temperature field. By virtue of the modified variational functional and divergence theorem, the resultant finite element formulation was derived. The effectiveness of the proposed method was verified by comparing two numerical examples with ABAQUS result. The numerical results demonstrate that the proposed method can still keep excellent accuracy even when the element shape degenerates to a situation of extreme distortion. This is one of marked features which differs from conventional finite element methods.Key words :heat conduction ;finite element method (FEM );fundamental solution ;coordinate transformation ;orthotropic materials材料按照性质和内部结构,一般可分为各向同性材料和各向异性材料. 各向同性材料具有简单、优良的特性,在材料工程领域得到广泛的应用[1 − 3]. Wang 等[1]采用基于杂交基本解的有限元收稿日期: 2020 − 06 − 01基金项目: 上海市自然科学基金资助项目(19ZR1421400)作者简介: 仇文凯(1994−),男,在读硕士,研究方向为杂交有限元法. E-mail :*****************通信作者: 王克用(1975−),男,副教授,博士,研究方向为Trefftz 有限元法和多孔介质传热. E-mail :*******************第 34 卷 第 4 期上 海 工 程 技 术 大 学 学 报Vol. 34 No. 42020 年 12 月JOURNAL OF SHANGHAI UNIVERSITY OF ENGINEERING SCIENCEDec. 2020方法(HFS-FEM)研究各向同性材料的热传导问题. Gao[2]提出一种求解各向同性材料热传导问题的无网格边界元方法. 目前,在汽车、造船、机械加工、航空航天、军工等工程领域中,许多各向同性材料还不能满足性能需求,因此,研究各向异性材料仍具有重要的理论和实际意义.在热传导问题[4 − 5]中,各向异性材料可分为一般各向异性材料和正交各向异性材料[6 − 9]. 各向异性材料的导热系数在各个方向上是不同的:一般各向异性材料导热系数张量中的所有元素都不为零,而正交各向异性材料导热系数张量中只有主对角线上的元素不为零. 根据导热系数的不同形式,正交各向异性材料可以进一步细分为常系数或变系数两种情况. 目前,关于用边界元法研究正交各向异性热传导问题的报道有很多. Perez 等[10]研究一般积分方程公式并用于求解均匀正交各向异性位势问题. Divo等[11]推导正交各向异性问题基本解的形式. Zhou等[12]针对二维正交各向异性位势问题,建立一个新的势导数边界积分方程,称为自然边界积分方程(NBIE). 通过边界元法以及其他数值方法分析此类问题已经开展了许多工作,而利用杂交基本解有限元法分析正交各向异性热传导问题的报道却非常少.杂交基本解有限元法是基于杂交Trefftz法的一种高效数值方法. Trefftz方法是由Trefftz于1926年提出的,利用满足控制方程的叠加函数来求解边值问题. 随后,Jirousek等[13]于1977年提出杂交Trefftz有限元法,将边界概念推广到单元间边界,并在单元内部构造满足非齐次Lagrange方程的坐标函数. 目前,杂交Trefftz有限元法已成功地应用于许多工程问题,如位势问题[14 − 15]、平面弹性问题[16]、夹杂分析[17 − 18]、接触问题[19]、轴对称问题[20 − 21]等. Wang等[22]采用杂交Trefftz有限元法(HT-FEM),以T-完备函数作为内部插值函数,研究轴对称位势问题. Wang等[23]基于完备解系提出分析正交各向异性位势问题的杂交Trefftz 有限元模型. 王克用等[24]利用杂交完备解有限元法分析功能梯度材料位势问题. 刘博等[25]利用含有特解的Poisson方程分析杂交Trefftz有限元法的轴对称问题. 杂交基本解有限元法的原始思想由Kompiš等[26]提出,其利用基本解近似位移场和应力场,并利用网线函数来实现相邻单元之间的连接. 高可乐等[27]采用杂交基本解有限元法分析考虑体力项的轴对称弹性问题,与杂交Trefftz 完备解有限元法相比,该方法可避免T-完备函数项选取困难,直接利用基本解来构造满足控制微分方程的单元内部插值函数. 此外,与边界元法相比,该方法消除了积分奇异性的缺点,在网格畸变方面表现出良好性能[28].本文基于文献[10 − 12, 23]的研究工作,利用杂交基本解有限元法分析正交各向异性材料的热传导问题.1 问题描述及基本方程u Qk=[k11k12k21k22]设为温度;为内部热源;k为各向异性材料的导热系数张量,,二维各向异性k12=k21=0k11 k22 0Q=0当,,时,式(1)可表示为式(2)即为二维正交各向异性热传导问题的控制方程. 考虑Dirichlet和Neumann两类边界条件,为¯u¯q n x n yΓ=Γu∪Γq 式中:和分别为给定的温度和热流;和分别为边界上任意点外法线向量的分量;为求解区域的整个边界.2 假定温度场与杂交Trefftz有限元法类似,杂交基本解有限元法采用两套假定的温度场来建立有限元模型,包括非协调单元内部温度场和辅助协调网线场. 精确满足控制方程的单元内部温度场,可保证单元内各点的计算精度,而相邻单元之间则由独立定义在单元边界上的辅助协调网线场连接,与杂交Trefftz有限元法不同的是,单元内部温度场由已知的基本解而不是T-完备函数构造.· 306 ·上海工程技术大学学报第 34 卷2.1 非协调单元内部温度场对于正交各向异性热传导问题,非协调的单元内部温度场可以表示为n s c e j N e (x ,y j )Ωe Γe 式中:为每个单元的源点个数;为待定参数;为二维正交各向异性热传导问题的基本解;为边界包围的单元域. 问题的基本解[10 − 12]应完全满足方程其中r =√(x P −x Q )2k 11+(y P −y Q )2k 22x P y P x Q y Q 式中:、和分别为场点坐标;和分别为源点坐标. x 向和y 向的采用以下关系确定源点的布局,为x c x b λ式中:为单元形心;为单元边界上的点;为无量纲参数. 特殊单元的源点分布如图1所示.中心点yxu e = N e c e (单元域内场)~~u e = N e d e (辅助网线场)源点节点图 1 两个假定温度场及其源点Fig. 1 Two assumed temperature fields with source points2.2 辅助协调网线温度场为保证相邻2个单元之间的连续性,在单元边界上建立一个辅助协调的网线温度场,为Ne (x )d e 式中:为形函数向量;为由单元的节点自由度组成的向量. 两节点单元边上的形函数如图2所示.12−1(1 + ξ)2−1(1 − ξ)2ξ = −1ξ = 0ξ = +1N 2~N 1~图 2 两节点单元边上的形函数Fig. 2 Shape functions on each two-node side of an element沿单元每两节点边上的温度分布为N 1 N 2ξ∈[−1,1]其中,和为在自然坐标系中定义的一维形函数,可表示为相应地,热流可表示为其中3 杂交基本解有限元列式3.1 修正的变分泛函∏m =∑e∏me∏me热传导问题总的杂交变分泛函可以通过得到,其中每个单元上的泛函可表示为第 4 期仇文凯 等:基于杂交基本解的正交各向异性材料热传导问题有限元法· 307 ·K ε=G T εH −1εG εP ε式中:为单元刚度矩阵;为等效的节点矢量.3.2 刚体运动的恢复为保证矩阵满秩,在计算单元内部场变量时,需要恢复舍弃的刚体运动项. 为获得单元内任意点的真实温度,根据现有研究[1, 18 − 19]提出的方法,可以很容易地恢复单元内温度场中舍弃的刚体运动项. 因此,温度的最终表达式为c 0u e ˜u ei 式中:为刚体运动参数,该参数可由单元所有节点处的和的最小二乘匹配确定,可写成c 0进一步地,刚体运动参数可表示为m 式中:为单元节点数.4 数值算例ε为定量理解计算精度,对任意变量f 引入相对误差(),可得f HFS −FEM f reference 式中:和分别为杂交基本解有限元解和参考解.为方便表达,算例中所有参数都采用无量纲(没有单位的物理量)的形式表示.4.1 方形区域内的热传导k 11=1k 22=2u =0u =10q =10在第1个算例中,考虑边长为0.1的正方形区域,其中材料的导热系数为和. 对正方形区域左右边界分别施加温度和;上部边界施加热流,下部边界假设为绝热;将整个模型划分为16个四节点四边形单元进行求解计算,如图3所示.yq = −10u = 0u = 10q = 0x4 × 4网格图 3 正方形区域、边界条件和有限元网格Fig. 3 Square domain, boundary conditions andfinite element mesh· 308 ·上 海 工 程 技 术 大 学 学 报第 34 卷γ=e /l γ=0为验证杂交基本解有限元法对网格畸变的不敏感性,定义5种网格变形方案,畸变参数()分别为0.1、0.3、0.5、0.7和0.9,与规则网格(,不变形)的计算结果对比如图4所示. 温度u 和热流q x ε(u )ε(q x )分量的相对误差如图5所示. 从图4中可以看出,即使对于γ = 0.9的极度扭曲网格,的最大值仍低于0.6%,且低于3%,这在工程实践中是可以接受的. 不同畸变程度下相同点的温度结果见表1.(a) γ = 0.1(b) γ = 0.3(c) γ = 0.5(d) γ = 0.7(e) γ = 0.9el图 4 网格畸变方案Fig. 4 Mesh distortion schemes1.0γ(a) 温度 u 的相对误差0.10.20.30.40.50.60.70.80.90.80.60.40.20Point 1 (0.050, 0.025)Point 2 (0.025, 0.025)Point 3 (0.035, 0.075)Point 4 (0.075, 0.075)Point 5 (0.015, 0.045)γ(b) 热流分量 q x 的相对误差0.10.20.30.40.50.60.70.80.94.03.53.02.52.01.51.00.50Point 1 (0.050, 0.025)Point 2 (0.025, 0.025)Point 3 (0.035, 0.075)Point 4 (0.075, 0.075)Point 5 (0.015, 0.045)q x 图 5 温度u 和热流分量的相对误差u q xFig. 5 Relative errors of temperature and heat flux component综上表明,该方法具有对网格畸变不敏感的优点. 将利用有限元软件ABAQUS 在划分841个单元网格时的计算结果作为参考解,杂交基本解有限元法在16个单元网格下的计算结果与之对比,两者能够较好地吻合,如图6所示.4.2 带圆孔的三角陀螺区域内的热传导在此算例中,研究包含圆孔的三角陀螺域的热传导,如图7所示. 模型中,圆孔半径0.1,小弧半径0.1,大弧半径0.4. 外边界上给定温度为u = 20,内边界上给定温度为u = 0. 考虑两种网格划分,分第 4 期仇文凯 等:基于杂交基本解的正交各向异性材料热传导问题有限元法· 309 ·k 11=1k 22=3别包含147和1 960个四节点四边形单元. 材料的导热系数为和. 三角陀螺域的温度云图如图8所示. 在粗网格下(含147个单元),杂交基本解有限元计算结果与ABAQUS 计算结果相差不大. 而与1 960个单元下的ABAQUS 计算结果相比,该方法可以在不牺牲精度的前提下,用粗网格(147个单元)计算出几乎相同的结果,这表明了该方法的有效性.q x q y 热流分量和云图分别如图9和图10所示.结果表明,用147个单元的杂交基本解有限元计算结果与用1 960个单元的ABAQUS 解更接近.对比表明,在相同条件下杂交基本解有限元法表现出更好的性能.5 结 语本文利用基于杂交基本解有限元法研究正交各向异性介质中的热传导问题. 该方法采用基本解的线性组合来近似单元域内的温度场,并引入定义在单元边界上的网线场来保证单元间的连续性. 借鉴文献[10 − 12]的工作,构建正交各向异性热传导问题的基本解,通过修正变分泛函,将两个假定的温度场关联起来,并利用高斯散度定理和驻值定理,从而导得单元刚度方程. 该方法在处理一些工程问题和物理问题时,由于其高效灵活的特点受到广泛关注和应用.数值算例表明,该方法具有计算精度高,对网格畸变不敏感且收敛速度快的优势. 虽然该方法解决了稳态正交各向异性热传导问题,但是仍然可以方便地推广至瞬态情形.表 1 不同网格畸变下选定5个点的温度结果Table 1 Results of temperatures at selected five points under different mesh distortions坐标γ=0γ=0.1γ=0.3γ=0.5γ=0.7γ=0.9(0.05,0.025) 5.077 8 5.077 1 5.078 8 5.080 9 5.080 1 5.059 6(0.025,0.025) 2.538 6 2.547 8 2.550 8 2.552 5 2.552 3 2.548 7(0.035,0.075) 3.636 1 3.639 3 3.633 2 3.643 9 3.647 1 3.626 8(0.075,0.075)7.627 57.620 57.628 07.621 67.627 57.635 6(0.015,0.045)1.541 51.540 81.540 11.543 01.547 21.550 9NT1110.0009.1678.3337.5006.6675.8335.0004.1673.3332.5001.6670.8330.000(a) ABAQUS 841网格(b) HFS-FEM 16网格10.0009.1678.3337.5006.6675.8335.0004.1673.3332.5001.6670.8330.000图 6 方形区域温度云图Fig. 6 Cloud maps of temperature in square domainu = 20147网格1 960网格u = 0R 1R 2R 3xy图 7 三角陀螺域,边界条件及有限元网格Fig. 7 Trigonometric gyroscopic domain, boundary conditionsand finite element mesh· 310 ·上 海 工 程 技 术 大 学 学 报第 34 卷(a) ABAQUS 147网格(b) HFS-FEM 147网格(c) ABAQUS 1 960网格20.000NT11NT1118.33316.66715.00013.33311.66710.0008.3336.6675.0003.3331.6670.00020.00018.33316.66715.00013.33311.66710.0008.3336.6675.0003.3331.6670.00020.00018.33316.66715.00013.33311.66710.0008.3336.6675.0003.3331.6670.000图 8 三角陀螺域温度云图Fig. 8 Cloud maps of temperature in the trigonometric gyroscopic domain(a) ABAQUS 147网格(b) HFS-FEM 147网格(c) ABAQUS 1 960网格315.036260.176205.316150.45595.59540.735−14.125−68.986−123.846−178.706−233.566−288.426−343.287387.894323.319258.744194.168129.59365.0180.443−64.133−128.708−193.283−257.859−322. 434−387.009387.894323.319258.744194.168129.59365.0180.443−64.133−128.708−193.283−257.859−322.434−387.009HFL, HFL1(Avg: 75%)HFL, HFL1(Avg: 75%)图 9 三角陀螺域热流分量q x 云图q x Fig. 9 Cloud maps of heat flux component in the trigonometric gyroscopic domain第 4 期仇文凯 等:基于杂交基本解的正交各向异性材料热传导问题有限元法· 311 ·参考文献:WANG H, QIN Q H. Hybrid FEM with fundamentalsolutions as trial functions for heat conduction simulation [J ] . Acta Mechanica Solida Sinica ,2009,22(5):487 − 498.[ 1 ]GAO X W. A meshless BEM for isotropic heat conductionproblems with heat generation and spatially varying conductivity [J ] . International Journal for Numerical Methods in Engineering ,2006,66(9):1411 − 1431.[ 2 ]KASSAB A J, DIVO E. A generalized boundary integralequation for isotropic heat conduction with spatially varying thermal conductivity [J ] . Engineering Analysis with Boundary Elements ,1996,18(4):273 − 286.[ 3 ]WANG Z, YAN P, GUO Z, et al. BEM/FDM conjugateheat transfer analysis of a two-dimensional air-cooled turbine blade boundary layer [J ] . Journal of Thermal Science ,2008,17(3):199 − 206.[ 4 ]DUDA P, Institute of Thermal Power Engineering, Facultyof Mechanical Engineering, et al. Finite element method formulation in polar coordinates for transient heat conduction problems [J ] . Journal of Thermal Science ,[ 5 ]2016,25(2):188 − 194.MERA N S, ELLIOTT L, INGHAM D B, et al. Acomparison of boundary element method formulations for steady state anisotropic heat conduction problems [J ] .Engineering Analysis with Boundary Elements ,2001,25(2):115 − 128.[ 6 ]PEREZ M M, WROBEL L C. Use of isotropicfundamental solutions for heat conduction in anisotropic media [J ] . International Journal of Numerical Methods for Heat and Fluid Flow ,1993,3(1):49 − 62.[ 7 ]GAO X W. Source point isolation boundary elementmethod for solving general anisotropic potential and elastic problemswithvaryingmaterialproperties [J ].Engineering Analysis with Boundary Elements ,2010,34(12):1049 − 1057.[ 8 ]WANG H M, QIN Q H, KANG Y L. A new meshlessmethod for steady-state heat conduction problems in anisotropic and inhomogeneous media [J ] . Archive of Applied Mechanics ,2005,74(8):563 − 579.[ 9 ]PEREZ M M, WROBEL L C. A general integral equationformulation for homogeneous orthotropic potential problems [J ] . Engineering Analysis with Boundary[10]763.936661.674559.412457.151354.889252.627150.36548.104−54.158−156.420−258.682−360.944−463.205821.233710.815600.397489.980379.562269.144158.72748.309−62.109−172.526−282. 944−393.362−503.780821.233710.815600.397489.980379.562269.144158.72748.309−62.109−172.526−282 944−393.362−503.780HFL, HFL2(Avg: 75%)HFL, HFL2(Avg: 75%)(a) ABAQUS 147网格(b) HFS-FEM 147网格(c) ABAQUS 1 960网格图 10 三角陀螺域热流分量q y 云图q y Fig. 10 Cloud maps of heat flux component in trigonometric gyroscopic domain· 312 ·上 海 工 程 技 术 大 学 学 报第 34 卷Elements ,1992,10(4):323 − 332.DIVO E, KASSAB A J. A generalized boundary-elementmethod for steady-state heat conduction in heterogeneous anisotropic media [J ] . Numerical Heat Transfer, Part B: Fundamentals ,1997,32(1):37 − 61.[11]ZHOU H L, TIAN Y, YU B, et al. The natural boundaryintegral equation of the orthotropic potential problem [J ] .Engineering Analysis with Boundary Element ,2016,62:186 − 192.[12]JIROUSEK J, LEON N. A powerful finite element forplate bending [J ] . Computer Methods in Applied Mechanics and Engineering ,1977,12(1):77 − 96.[13]WANG K Y, ZHANG L Q, LI P C. A four-node hybrid-Trefftz annular element for analysis of axisymmetric potential problems [J ] . Finite Elements in Analysis and Design ,2012,60:49 − 56.[14]王克用, 岑皓, 李培超. 位势问题Trefftz 有限元法的研究进展[J ] . 上海工程技术大学学报,2017,31(3):204 −209.[15]WANG K Y. A four-node hybrid-Trefftz plane elasticityelement with fundamental analytical solutions [J ] .Advanced Materials Research ,2011,279:194 − 199.[16]SHE Z, WANG K Y, LI P C. Hybrid Trefftz polygonalelements for heat conduction problems withinclusions/voids [J ] . Computers & Mathematics with Applications ,2019,78(6):1978 − 1992.[17]SHE Z, WANG K Y, LIU H. Thermal analysis of ellipticalfiber-reinforced composites by the hybrid Trefftz finite element method [J ] . International Journal of Heat and Mass Transfer ,2019,144:118596.[18]WANG K Y, QIN Q H, KANG Y L, et al. A directconstraint-Trefftz FEM for analysing elastic contact problems [J ] . International Journal for Numerical Methods in Engineering ,2005,63(12):1694 − 1718.[19]ZHOU J C, WANG K Y, LI P C, et al. Hybrid fundamentalsolution based finite element method for axisymmetric potential problems [J ] . Engineering Analysis with Boundary Elements ,2018,91:82 − 91.[20]高可乐, 王克用. 轴对称热弹性问题杂交基本解Trefftz有限元分析[J ] . 上海工程技术大学学报,2020,34(1):54 − 58, 75.[21]WANG K Y, HUANG Z M, LI P C, et al. Trefftz finiteelement analysis of axisymmetric potential problems in orthotropic media [J ] . Applied Mathematics and Mechanics ,2013,34(5):462 − 469.[22]WANG K Y, LI P C, WANG D Z. Trefftz-type FEM forsolving orthotropic potential problems [J ] . Latin American Journal of Solids and Structures ,2014,11(14):2537 − 2554.[23]王克用, 李培超. 变系数位势问题的Trefftz 有限元法[J ] . 上海工程技术大学学报,2014,28(1):58 − 62,67.[24]刘博, 王克用, 王明红. 轴对称Poisson 方程的Trefftz 有限元解法[J ] . 应用数学和力学,2015,36(2):140 − 148.[25]KOMPIŠ V, BÚRY J. Hybrid-Trefffz finite elementformulations based on the fundamental solution [C ] //Proceedings of IUTAM Symposium on Discretization Methods in Structural Mechanics, Solid Mechanics and its Applications. Dordrecht: Springer, 1999: 181-187.[26]高可乐, 王克用, 李培超. 考虑体力的轴对称弹性问题杂交基本解有限元法[J ] . 轻工机械,2020,38(1):5 − 11,17.[27]CAO L L, WANG H, QIN Q H. Fundamental solutionbased graded element model for steady-state heat transfer in FGM [J ] . Acta Mechanica Solida Sinica ,2012,25(4):377 − 392.[28](编辑:韩琳)第 4 期仇文凯 等:基于杂交基本解的正交各向异性材料热传导问题有限元法· 313 ·。
第 章 弹性静力学问题的边界元法4.1引言1边界元法的特点解析与数值相结合的方法,具有较高的计算精度。
2弹性静力学的基本方程 0,=+i j ij f σ)(,,,i j j i ij k k ij u u u ++=µδλσ )(21,,i j j i ij u u +=εu ii Γu u on =t ij ij Γt n on=σ4.2弹性力学边界积分方程1弹性力学基本解-Kelvin 解设无限大弹性体内q 点处受沿j x 方向单位集中力q j δ的作用,弹性体内场点p的位移:))(()43[()1(161),(2*rx x x x r q p u qj p j q i p i ij ij −−+−−=δννπµ r :p 、q 点间的距离;*ij u 的下标i 表示p 点位移方向,j 表示q 点力的作用方向。
点p 处任意截面上的力:})(]))((3)21[(])()()[21{()1(81),(22*rx x n r x x x x r x x n r x x n rq p t q kp k k q jp j q i pi ij qi p i j q j p j i ij −−−−+−+−−−−−−=δνννπ当pq ,Kelvin 解*ij u 和*ij t 分别具有一次和二次奇异性。
2贝蒂互等定理设弹性体在f i 和t i 作用下的位移场为u i ,在在f’i 和t’i 作用下的位移场为u’i ,则:∫∫∫∫′+′=′+′Ωi i Γi i Ωi i Γii Ωu f Γu t Ωu f Γu t d d d d即:第一组外力在第二组外力作用下所产生的位移场上所做的功等于第二组外力在第一组外力作用下所产生的位移场上所做的功。
3 Somigliana 积分恒等式视Kelvin 解为贝蒂互等定理中的第二组弹性力学解,则∫∫∫∫+=+Ωi i Γi ij Ωij i Γij i Ωu f Γu t Ωu f Γu t d d d d **** (1)*i f 为与Kelvin 解对应的体力,即仅q 点作用有单位集中力,q 点之外没有体力作用。