第九章_有限元法-边界积分方法_270802905
- 格式:pdf
- 大小:191.92 KB
- 文档页数:10
第9章非线性问题的有限单元法9.1 非线性问题概述前面章节讨论的都是线性问题,但在很多实际问题中,线弹性力学中的基本方程已不能满足,需要用非线性有限单元法。
非线性问题的基本特征是变化的结构刚度,它可以分为三大类:材料非线性、几何非线性、状态非线性。
1. 材料非线性(塑性, 超弹性, 蠕变)材料非线性指的是材料的物理定律是非线性的。
它又可分为非线性弹性问题和非线性弹塑性问题两大类。
例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。
2. 几何非线性(大应变, 大挠度, 应力刚化)几何非线性是有结构变形的大位移引起的。
例如钓鱼杆,在轻微的垂向载荷作用下,会产生很大的变形。
随着垂向载荷的增加,杆不断的弯曲,以至于动力臂明显减少,结构刚度增加。
3. 状态非线性(接触, 单元死活)状态非线性是一种与状态相关的非线性行为。
例如,只承受张力的电缆的松弛与张紧;轴承与轴承套的接触与脱开;冻土的冻结与融化。
这些系统的刚度随着它们状态的变化而发生显著变化。
9.2 非线性有限元问题的求解方法对于线性方程组,由于刚度方程是常数矩阵,可以直接求解,但对于非线性方程组,由于刚度方程是某个未知量的函数则不能直接求解。
以下将简要介绍借助于重复求解线性方程组以得到非线性方程组解答的一些常用方法。
1.迭代法迭代法与直接法不同,它不是求方程组的直接解,而是用某一近似值代人,逐步迭代,使近似值逐渐逼近,当达到允许的规定误差时,就取这些近似值为方程组的解。
与直接法相比,迭代法的计算程序较简单,但迭代法耗用的机时较直接法长。
它不必存贮带宽以内的零元素,因此存贮量大大减少,且计算中舍入误差的积累也较小。
以平面问题为例,迭代法的存贮量一般只需直接法的14左右。
在求解非线性方程组时,一般采用迭代法。
2. 牛顿—拉斐逊方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
有限元法第一章绪论1.有限元法的定义:有限元法是近似求解一般连续场问题的数值方法。
2.有限元法的特点:A物理概念清晰。
B复杂的结构适应性。
C各种物理问题的适用性。
D适合计算机实现的高效性。
3.有限元法的基本思想:首先,将表示结构的连续体离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示全求解域内待求的未知场变量。
每个单元内的近似函数用未知场变量函数在单元各个节点上的数值和与其对应的插值函数表示。
最后,通过和原问题数学模型等效的变分原理或加权余量法,建立求解基本未知量的代数方程组或常微分方程组,应用数值方法求解,从而得到问题的解答。
4.有限元法的基本步骤:从选择未知量的角度有限元法分为三类:位移法、力法和混合法。
位移法求解步骤:A结构的离散化。
B单元分析。
C单元集成。
D引入约束条件,求解线性方程组,得出节点位移。
E由节点位移计算单元的应力与应变。
5.有限元法的优缺点:优点:a有限元法可以模拟各种几何形状复杂的结构,得出其近似解。
B有限元法的解题步骤可以系统化、标准化,能够开发出灵活通用的计算机程序,使其能够广泛地应用于各种场合。
c 边界条件是在建立结构总体刚度方程后再引入的,边界条件和结构模型具有相对独立性,可以从其他CAD 软件中导入创建好的模型。
有限元法不需要适用于整个结构的插值函数,而是每个单元本身有各自的插值函数。
这就使得数学处理比较方便,对复杂形状的结构也能适用。
e有限元法很容易处理非均匀连续介质,可以求解非线性问题和进行耦合场分析。
F有限元法可以与优化设计方法相结合,以便发挥各自的优点。
缺点:a有限单元对于复杂问题的分析计算所耗费的计算资源是相当惊人的。
b对无限求解域问题没有较好的处理方法。
c有限元软件在具体应用时需依赖使用者的经验,而且在精度分析时需耗费相当大的计算资源。
6.屈曲:载荷的大小超过一定的数值,变形的形状与此之前变形的形状发生了不同的变化,从而承担载荷的能力减少了,把这一现象称为屈曲。
有限元法的分析从百度等搜索到的资料以及老师在课上对有限元法的相关介绍我们可以得知,有限元法是基于近代计算机的快速发展而发展起来的一种近似数值方法,用来解决力学、数学中带有特定边界条件的偏微分方程问题。
而这些偏微分方程是工程实践中常见的固体力学和流体力学问题的基础。
有限元法的核心思想是“数值近似”和“离散化”,所以它在历史上的发展也是围绕着这两个点进行的。
有限元法用于解决工程问题的微分方程的近似解,主要考虑怎么分割单元。
比如,可以分割为长方形单元、三角形单元等形状的单元,不同形状的分割的出来的结果也是不尽相同的,边界条件也会影响有限元法的解。
有限元法是将问题先分解,再进行合并,网格划分是分解,从单刚到总刚是合并,我们将这些复杂的处理量交给计算机处理,把一个困难的问题转化成一个个小的简单的问题交给计算机处理,最终得到问题的解,因此,有限元法可以说是将一个大问题转化为若干个简单问题的叠加的方法。
有限元法再物理原理上的理解可以概括为,“求解使系统能量泛函数极小值的系统状态”。
这个角度是根据划分的网格和网格内部的特定点建立相应函数。
在数学原理上,有限元法是求解满足特定微分方程的数值解。
这个角度上可以看作是加权残值的一种形式,将甲醛积分时的权函数与拟合解函数的试函数取为相同的函数。
有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法加以组合,从而形成原有系统的一个数值近似系统,也就是形成相应的数值模型。
有限元法的计算步骤归纳为以下3个基本步骤:网格划分、单元分析、整体分析。
有限元法的基本做法是用有限个单元体的集合来代替原有的连续体。
因此首先要对弹性体进行必要的简化,再将弹性体划分为有限个单元组成的离散体。
单元之间通过节点相连接。
由单元、节点、节点连线构成的集合称为网格。
通常把三维实体划分成四面体或六面体单元的实体网格,平面问题划分成三角形或四边形单元的面网格,如图对于弹性力学问题,单元分析就是建立各个单元的节点位移和节点力之间的关系式。
应用地球物理系列课程《有限元与边界元》教案李貅2006.8教学基本情况课程学时课程总学时50,讲授40学时,实验10课程要求(1)掌握有限元法和边界元法的基本理论、基本算法;(2)具有将实际地球物理问题中的一般边值问题,利用有限元和边界元的基本原理,转化为有限元方程和边界积分方程的能力;(3)了解有限元法和边界元法的基本编程思想;(4)初步具有运用有限元法和边界元法解释实际地球物理问题的能力。
课程的重点和难点(1)本课程的重点:有限元和边界元的基本理论和基本算法;解二维拉普拉斯方程的有限元法和边界元法;解二维赫姆霍兹方程的有限元法和边界元法;有限元法和边界元法的应用。
(2)本课程的难点:各种边值问题的变分原理;里兹—伽略金法;基本解与格林公式。
课程学时分配第一部分有限元法序要求学生明确4个问题1、什么是有限元法___有限元法-----是以变分原理和剖分插值为基础的数值计算方法。
2、有限元法实现过程的哲学思想边值问题变分问题(泛函极值问题)剖分插值(变分原理)(有限元法)节点上未知量的高阶线性方程组求出节点场值。
3、有限元法的优缺点优点:1)于物性分布复杂的地球物理问题2)解题过程规范缺点:1)全区域剖分2)单元和节点数目多3)现性代数方程组阶数大4)对于无界区域问题须用大型计算机4、有限元法的应用1)应用条件----给出正确的边值问题;有计算程序和计算机。
2)应用领域----地球物理中:位场延拓;重、磁、电、震、热等正演。
工程应用:3)解决地质问题的特点----定量解释4) 有限元法在地球物理中所起的作用----解决了从前无法计算的地球物理问题;为地球物理反演奠定了基础;提高了地球物理勘探的地质效果。
1.围岩稳定性分析围岩分析中采用理想性模型模拟地下洞室开挖过程中洞壁的应力和变形,并对锚固、衬石切等工程加固措施设计了专门的单元。
该软件采用Windows 风格的用户使用界面,工程技术人员只需输入必要的工程结构参数,就可很快地得到有限元计算结果。
第9章有限元法程序设计9.1 引言在用有限元法进行结构分析时,将会遇到大量的数值计算,因而在实用上是一定要借助于计算机和有限元程序,才能完成这些复杂而繁重的数值计算工作。
事实上,有限元程序的设计是有限元研究的一个很重要的部分。
它是理论和方法的载体,是理论用于实际必不可少的桥梁,是有限元学术研究与实际应用水平的代表。
有好的、高深的理论和算法并不等于有好的程序,还必须有实际的程序开发经验的多年积累、丰富的计算机知识、大量的资金和人力的投入,多年的开发修正与改进才能编制出好的程序来。
一些著名的有限元程序开发的发展历史也体现出了这一规律。
设计一个用于结构分析的有限元法程序,要求设计者至少应该掌握下列知识:(1)掌握一种程序开发工具,如VC(Visual C++),CB(C++Buildel),Delphi,VB(Visual Basic)或VF(Visual Fortran)等。
在本书中所有程序均用VC写出。
(2)数值方法,如线性和非线性代数方程的求解,矩阵特征值的求解以及数值积分等。
(3)结构分析的基本理论,特别是用有限元法对结构进行分析的原理、方法和步骤。
由于一般的软件工程师不懂结构分析原理,因此,结构分析程序的开发任务主要应由结构工程师来承担。
掌握结构分析程序设计方法,是以计算机辅助设计为主要标志的现代工程设计方法对结构工程师的要求。
作为结构工程师,应该具有对结构分析程序的使用、阅读、修改和编制的基础知识和技术素质。
有限元程序的总体组成可分为三个部分:前处理部分,有限元分析本体部分以及后处理部分。
有限元分析本体部分是有限元分析程序的核心。
它根据离散模型的数据文件进行有限元分析,有限元分析的原理和采用的数值方法集中于此。
因此,这一部分程序是有限元分析是否准确可靠的关键部分。
有限元分析所使用的离散模型的数据文件主要包括:模型的节点数、节点坐标与节点编码,单元数据与单元编码;材料和载荷信息等。
实际工程问题的离散模型数据文件十分庞大。
有限元方法的求解步骤引言有限元方法是一种数值分析技术,用于求解连续介质力学问题。
它的基本思想是将复杂的物理问题离散化为简单的几何单元,并在每个单元上建立适当的数学模型。
通过在整个域内组装这些单元,最终得到整个系统的近似解。
本文将详细介绍有限元方法的求解步骤,包括问题建模、网格划分、单元模型与刚度矩阵计算、边界条件处理和求解方程等内容。
问题建模在使用有限元方法求解实际问题之前,首先需要对问题进行建模。
这涉及确定问题的几何形状、边界条件和材料属性等方面。
通常可以使用偏微分方程来描述力学行为,并根据具体情况选择适当的方程类型。
网格划分网格划分是有限元方法中非常重要的一步,它将连续域离散化为有限多个几何单元。
常用的网格类型包括三角形网格和四边形网格。
根据具体情况,可以选择不同密度和形状的网格来逼近真实几何形状。
单元模型与刚度矩阵计算在每个几何单元上,需要建立适当的数学模型来描述物理行为。
通常使用一些基本假设和理论模型来近似真实行为。
对于弹性力学问题,常用的单元模型包括线性弹性、非线性弹性和塑性等。
根据单元模型,可以计算每个单元的刚度矩阵。
刚度矩阵描述了单元内部各个节点之间的相互作用关系。
它是由材料属性和几何形状决定的,并且可以通过数值积分等方法进行计算。
边界条件处理边界条件是求解过程中必须考虑的重要因素。
它们描述了系统在边界上的约束条件,例如固定边界、施加力或位移等。
在有限元方法中,通常将边界条件转化为所谓的约束方程,以便将其应用于整个系统。
对于固定边界条件,可以直接将相应自由度设置为零。
而施加力或位移边界条件,则需要将其转化为等效荷载或约束方程,并在求解过程中进行处理。
求解方程有限元方法最终目标是求解整个系统的近似解。
为此,需要将所有单元的刚度矩阵组装成整个系统的刚度矩阵。
同时,需要将所有边界条件应用于约束方程中。
通过求解线性方程组,可以得到系统的节点位移。
常用的求解方法包括直接法和迭代法。
在实际计算中,可以根据问题特点选择最适合的方法。
有限元⽅法(课件)第⼀章有限元概貌与发展有限元⽅法是近似求解数理边值问题的⼀种数值技术。
这种⽅法⼤约有60年的历史。
它⾸先在本世纪40年代被提出,在50年代开始⽤于飞机设计。
后来,该⽅法得到了发展并被⾮常⼴泛地⽤于结构分析问题中。
⽬前,作为⼴泛应⽤于⼯程和数学问题的⼀种通⽤⽅法,有限元已相当著名。
有限元法应⽤于电磁场中,最先是⽤结点上的插值基函数来表征该结点上的⽮量电场或磁场分量的,称为结点有限元。
但是,在使⽤结点有限元进⾏电磁仿真时,会有⼏个严重的问题。
⾸先,⾮物理的或所谓伪解可能会出现。
其次,在材料界⾯和导体表⾯强加边界条件很不⽅便。
再次,处理导体和介质边缘及⾓也很困难,这是由与这些结构相关的场的奇异性造成的。
在这些问题中,最后⼀个问题⽐其它两个问题更严重,因为它缺少通⽤的处理⽅法。
即使对前两个问题,⽬前的处理状况也不能完全令⼈满意。
因此,有必要探讨其它的可能性或其它⽅法,⽽不仅仅是改进,从⽽将电磁场有限元分析引⼊⼀个新的时代。
幸运的是,⼀种崭新的⽅法已经被发现。
这种⽅法使⽤所谓⽮量基或⽮量元,它将⾃由度(未知量)赋予棱边⽽不是单元结点。
因为这个原因,它也叫棱边元(edge element )。
虽然Whitney 早在35年前就描述过这些类型的单元,但它们在电磁学中的应⽤及其重要性直到前⼏年才被认识到。
在80年代初,Nedelec 讨论了四⾯体和矩形块棱边元的构造。
Bossavit 和Verite 将四⾯体棱边元应⽤于三维涡流问题。
Hano 独⽴地导出了矩形棱边元,并⽤于介质加载波导的分析。
Mur 和de Hoop 考虑了⾮均匀媒质中的电磁场问题。
Van Welij 和Kameari 应⽤六⾯体棱边元进⼀步考虑了棱边元在涡流计算中的应⽤。
Barton 和Cendes 将四⾯体棱边元应⽤于三维磁场计算,同时,Crowley 提出了⼀种更复杂的单元类型,即所谓的协变(covariant )投影单元,它允许单元带有弯曲的棱边。