Lurgi(鲁奇)加压气化炉简介
- 格式:doc
- 大小:22.00 KB
- 文档页数:2
鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是一种用于生产工业原料和能源的设备,它可以将固体燃料,如煤、木材等,通过加压气化的方式转化为可燃气体,从而实现能源的高效利用。
随着能源需求的不断增加和环境保护意识的提高,对加压气化炉的运行和技术改造的探讨变得愈发重要。
本文将从加压气化炉的基本原理、运行情况以及技术改造方面展开讨论。
一、加压气化炉的基本原理鲁奇加压气化炉是一种通过给固体燃料施加高压,使其在高温下与氧气发生气化反应的设备。
其基本原理是将固体燃料加热至一定温度后,通过给予一定的高压使其与氧气发生气化反应,生成可燃气体和灰渣。
这种气化反应产生的可燃气体可以作为燃料供给燃烧设备,从而实现能源的利用。
二、加压气化炉的运行情况1. 原料选择:加压气化炉可以使用各种固体燃料,包括煤、木材、秸秆等。
在实际运行中,不同的原料会对气化反应的速度和产物的成分产生影响,因此在选择原料时需要进行综合考虑。
2. 气化反应:气化反应是加压气化炉的核心部分,其速度和效果对设备的运行效率和产物的质量有重要影响。
在实际操作中,需要控制气化反应的温度、压力和气体流速等参数,以保证气化反应的稳定和高效进行。
3. 清灰处理:加压气化炉在运行过程中会产生大量的灰渣,这些灰渣会对设备的正常运行产生影响。
需要定期进行清灰处理,确保设备的正常运行。
4. 安全管理:加压气化炉是一种高温高压设备,其运行安全至关重要。
在运行中需要加强对设备的监控和维护,确保设备的安全运行。
三、加压气化炉的技术改造随着科技的进步和能源需求的变化,对加压气化炉的技术改造变得愈发重要。
以下是一些可能的技术改造方向:1. 节能改造:通过提高设备的热效率和气化反应的效率,减少能源的消耗,从而实现节能降耗。
2. 环保改造:通过改进气化反应的参数控制和气体净化系统,降低气化过程中产生的有害气体排放,实现环保目标。
3. 自动化改造:通过引入自动控制系统,提高设备的稳定性和可靠性,减少人为操作的误差,提高生产效率。
鲁奇炉(Lurgi Gasifier)是一种用于煤炭气化的加压移动床反应器,它的主要工作原理可以概括如下:1.物料输入与预处理:o煤炭首先经过破碎和干燥处理,然后通过煤锁(Coal Lock)按批次定量送入炉体内部。
煤锁通过充气加压与炉内压力保持一致,防止气体泄漏。
2.炉体结构与过程分区:o鲁奇炉为立式圆筒形结构,炉体内壁有水夹套,可利用高温煤气产生的热量生产蒸汽。
煤炭自上而下通过炉膛,依次经过干燥区、干馏区、气化区、部分氧化区和燃烧区。
3.气化过程:o在炉内的不同高度,煤炭与气化剂(通常包括氧气、水蒸气以及其他可能的还原气体)逆流接触。
o干燥区去除煤炭中的水分;干馏区发生热解作用,释放挥发分;气化区煤炭在一定的温度和压力下与气化剂反应生成合成气(主要成分为氢气H2、一氧化碳CO以及其他烃类和惰性气体)。
o部分氧化区煤炭与氧气进一步反应,提供热量维持气化反应所需的高温条件;燃烧区则是剩余未完全反应的煤炭和气体被充分燃烧。
4.排渣过程:o固态排渣鲁奇炉中,煤灰在气化完成后形成固态灰渣,通过炉底的炉箅排出到灰斗。
o液态排渣鲁奇炉在下部增设了喷嘴,高速喷入氧气和蒸汽,使煤灰在高温下熔融形成液态渣,通过调整急冷室与炉缸的压力差,控制液态渣以适宜的速度排出,避免排渣口堵塞。
5.能量回收与环境保护:o鲁奇炉的设计考虑了能源的高效利用和环保要求,炉壁夹套产生的蒸汽可用于发电或者作为工艺蒸汽循环使用。
o产生的煤气经过冷却、净化处理,分离出的产品包括清洁煤气、硫磺等,同时对废水和废气进行处理,以达到环保排放标准。
总的来说,鲁奇炉通过一系列复杂的化学反应将固体煤炭转化为便于运输和使用的合成气,实现了煤炭资源的有效转化和利用,同时也是洁净煤技术的重要组成部分,在煤化工产业中具有重要地位。
鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。
1。
Lurgi加压气化炉Lurgi炉是一种固定床加压气化炉。
严格来说,Lurgi加压气化炉属于第一代煤气化技术,但自发明以来不断得到改进,至今在南非仍有大规模使用。
Lurgi气化工艺具有以下特点:(1)使用粒度在5~50mm之间的粒煤;(2)可能气化从褐煤到无烟煤的各种煤,但对原料的热稳定性、机械强度、粘结剂等性能指标有一定要求;(3)操作压力从2~3MPa;(4)气化烟煤时,粗煤气中CO:15%~25%;CO2:24%~34%;H2:34%~40%;CH4:9%~13%;(5)炉顶煤气温度250~350℃;(6)单炉产气量30000~50000Nm3/h;(7)冷煤气效率可达80%。
从以上工艺特点可以看出,Lurgi的煤气温度较低,煤气中CH4及焦油含量较高,粗煤气净化和焦油处理单元不可避免,由此引起的环保问题比较突出。
从煤气成份来看,Lurgi是最适合于直接还原的制气技术,只要对煤气进行脱碳处理后就可以直接供还原竖炉使用。
2 。
Texaco水煤浆气化炉Texaco炉是美国Texaco公司在重油气化基础上开发出的煤气化技术,是目前商业业绩最多的第二代气流床气化工艺,优点是压力高,运行和操作经验丰富,气化温度高,煤气有效成分高,主要技术特点如下:(1)进料采用75%以上-200目煤粉制成的水煤浆,煤浆中煤粉质量分数为65~70%。
理论上Texaco可用于各种煤的气化,但经验表明最适宜的煤种应是灰熔点为1300℃左右、灰分低于20%的煤种;(2)气化压力从2.6~8.4MPa;(3)碳转化率在95%以上,冷煤气效率可达到70%以上;(4)干煤气中的(CO+H2)有效气成份在80%以上,CO约占49%,H2约占31%,CO2约占18%(大同煤);(5)气化温度达到1300~1400℃,水激冷后的粗煤气温度为200~260℃。
如果采用热能回收式气化炉,粗煤气的温度换热后从1370℃降至400℃;(6)采用单喷嘴、热壁炉的设备形式,喷嘴寿命平均在1500h,耐材寿命在1~2年,所以必须设有备用系统;(7)生产1000Nm3(CO+H2)有效气的氧耗在400Nm3左右,煤耗在640kg左右;(8)单炉设计最大日处理煤量可达到2000t。
鲁奇气化炉鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。
鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是一种用来进行煤炭或其他固体燃料的气化的设备。
它通过提供高压气体,将固体燃料转化为气体燃料,然后再用于发电或其他工业生产过程中。
鲁奇加压气化炉被广泛应用于煤化工和煤电等领域,并且在最近几年得到了技术改造和升级。
鲁奇加压气化炉的运行需要注意以下几点。
首先是燃料的选择,固体燃料的选择直接影响着气化炉的工作效果和产气质量。
通常情况下,煤炭作为最主要的固体燃料,其选择应该根据煤的种类和质量来确定。
其次是操作条件的控制,包括气化温度、气化压力、气化速度等。
操作条件的调整和控制可以影响气化炉的煤气产量和产气质量,因此要根据实际需要进行适当的调整。
最后是气化炉的维护和保养,包括对设备的定期检查、清洁和维修等。
正常的维护和保养可以延长气化炉的使用寿命,提高其工作效率。
对于鲁奇加压气化炉的技术改造有以下几点探讨。
首先是改进气化炉的设计和结构,以提高其煤气产量和产气质量。
可以改变气化炉的内部布局和反应器结构,优化气化反应的过程条件。
其次是改进气化炉的操作和控制系统,以提高气化过程的稳定性和控制精度。
可以采用先进的自动控制系统,使气化炉能够根据实时数据进行动态调整和优化。
最后是改进气化炉的能源利用和环保性能。
可以将气化炉与其他能源转化设备相结合,实现多能互补和高效利用。
可以采用先进的烟气净化技术,降低气化过程中的排放物污染。
鲁奇加压气化炉在运行和技术改造中还需注意一些问题。
首先是安全性问题,加压气化炉在运行时存在高温、高压等危险因素,需要严格遵守操作规程和安全措施,确保人员的安全和设备的正常运行。
其次是经济性问题,技术改造需要考虑投资和收益的平衡,选择具有较小改造成本和较高经济效益的改造方案。
最后是环境保护问题,气化炉的运行和改造过程中需要重视减少能源消耗和排放物污染,实现可持续发展的目标。
鲁奇加压气化炉的运行和技术改造是一个复杂而关键的过程。
只有通过严格的操作控制和科学的技术改造,才能实现气化炉的高效运行和优化控制,提高能源利用效率和环境保护水平。
鲁奇加压气化炉炉型构造及工艺流程4.第三代加压气化炉第三代加压气化炉是在第二代炉型上的改进,其型号为Mark-Ⅲ,是目前世界上使用最为广泛的一种炉型。
其内径为Ф3.8m,外径Ф4.128m,炉体高为12.5m,气化炉操作压力为3.05Mpa。
该炉生产能力高,炉内设有搅拌装置,可气化强黏结性烟煤外的大部分煤种。
第三代加压气化炉如图4-3-21所示。
图4-3-21 第三代加压气化炉为了气化有一定黏结性的煤种,第三代气化炉在炉内上部设置了布煤器与搅拌器,它们安装在同一空心转轴上,其转速根据气化用煤的黏结性及气化炉生产负荷来调整,一般为10~20r/h,从煤锁加入的煤通过布煤器上的两个布煤孔进入炉膛内,平均每转布煤15~20mm厚,从煤锁下料口到煤锁之间的空间,约能储存0.5h气化炉用煤量,以缓冲煤锁在间歇充、泄压加煤过程中的气化炉连续供煤。
在炉内,搅拌器安装在布煤器的下面,其搅拌桨叶一般设有上、下两片桨叶。
桨叶深入到煤层里的位置与煤的结焦性能有关,其位置深入到气化炉的干馏层,以破除干馏层形成的焦块。
桨叶的材质采用耐热钢,其表面堆焊硬质合金,以提高桨叶的耐磨性能。
桨叶和搅拌器、布煤器都为壳体结构,外供锅炉给水通过搅拌器、布煤器,最后从空心轴内中心管,首先进入搅拌器最下底的桨叶进行冷却,然后再依次通过冷却上桨叶、布煤器,最后从空心轴与中心管间的空间返回夹套形成水循环。
该锅炉水的冷却循环对布煤搅拌器的正常运行非常重要。
因为搅拌桨叶处于高温区工作,水的冷却循环不正常将会使搅拌器及桨叶超温烧坏造成漏水,从而造成气化炉运行中断。
该炉型也可用于气化不黏结性煤种。
此时,不安装布煤搅拌器,整个气化炉上部传动机构取消,只保留煤锁下料口到炉膛的储煤空间,结构简单。
炉篦分为五层,从下到上逐层叠合固定在底座上,顶盖呈锥形,炉篦材质选用耐热、耐磨的铬锰合金钢铸造。
最底层炉炉篦的下面设有三个灰刮刀安装口,灰刮刀的安装数量由气化原料煤的灰分含量来决定,灰分含量较少时安装1~2把刮刀,灰分含量较高时安装3把刮刀。
鲁奇加压气化的工业应用及发展发布时间:2021-12-28T08:55:57.574Z 来源:《中国科技人才》2021年第22期作者:张鑫[导读] 证明以煤制气尤其是以鲁奇炉造气在我国拥有广阔的发展前景。
内蒙古大唐国际克什克腾煤制天然气有限责任公司内蒙古赤峰025350摘要:鲁奇加压气化的工业应用十分广泛,如以煤制氨、煤制油、煤制天然气,它可作为氨、甲醇、甲烷、合成原料气;它可以生产出纯氢气供金属冶炼使用,它可以作为气体燃料,还可以获得优质一氧化碳,并作为 C,化学品进一步深度加工成有机产品,它还可以联合发电等。
50年代中期,云南解放军化肥厂从前苏联引进了第一代鲁奇炉,以煤造气制合成氨。
70 年代末,沈阳加压气化厂用第一代鲁奇炉制取城市煤气。
80 年代初,山西天脊煤化工集团公司(原山西化肥厂) 从西德鲁奇公司成套引进第三代 Mark- IV 鲁奇炉,用于制取合成氨的原料气。
以后我国又建设了兰州煤气厂和哈尔滨气化厂,这 2 套装置已于 90 年代初相继投入运行,如今内蒙古大唐国际克什克腾煤制天然气有限责任公司也已经完成完全投产。
证明以煤制气尤其是以鲁奇炉造气在我国拥有广阔的发展前景。
关键词:鲁奇;气化;工业应用一、鲁奇炉结构简介鲁奇加压气化炉是一个结构复杂的组合设备,它由炉体与煤锁、灰锁等辅助设备组成。
1. 炉体炉体的主要功能是均匀布煤、布气、除灰,使气化剂与煤均匀接触,从而使固体煤转化为煤气。
炉体分为壳体和炉内件两部分。
国内各厂鲁奇炉壳体均采用水冷却双层夹套外壳,外壳体承受高压,内夹套仅承受夹套蒸汽通过气化炉床层的阻力。
不同之处是各厂的水夹套宽度及容积有所不同,夹套内外壳体由于温度不同所采取的吸收热膨胀的方式也不相同。
内蒙古大唐国际克什克腾煤制天然气有限责任公司的装置气化炉是圆筒形、双层夹套式容器,内外壳由钢板制成。
主要由炉体、煤锁、灰锁、炉篦、气化剂入口和煤气出口等设备部分组成。
在气化炉中进行加压气化可以提高反应速度,增加气化强度,提高生产能力,改善煤气质量。
鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是一种常用于工业生产中的关键设备,其主要作用是将固体燃料在高温下进行氧化反应,产生可燃性气体,用于提供热能或者直接用于生产过程。
随着工业技术的发展,鲁奇加压气化炉也在不断进行技术改造,以提高其运行效率和减少对环境的影响。
本文将从鲁奇加压气化炉的基本运行原理、存在的问题以及技术改造等方面展开探讨。
一、鲁奇加压气化炉的基本运行原理鲁奇加压气化炉是一种通过高温和高压条件下使固体燃料发生气化反应的设备。
其基本运行原理是利用气化剂(通常是空气或者氧气)和高温条件使固体燃料(比如煤、木材等)发生气化反应,产生一氧化碳、氢气等可燃性气体。
这些气体可以直接用于提供热能,也可以作为化工生产中的原料。
鲁奇加压气化炉一般由气化炉本体、气体净化系统、残渣处理系统等部分组成。
二、鲁奇加压气化炉存在的问题虽然鲁奇加压气化炉在工业生产中起到重要作用,但是在实际运行中也存在一些问题。
首先是能源利用率不高,由于气化反应过程中热能的损失比较大,导致实际能源利用率偏低。
其次是气体净化系统效率低下,气化过程中会产生大量的粉尘、灰渣、焦油等副产品,如果不能有效地处理会对环境和健康造成影响。
鲁奇加压气化炉还存在操作复杂、易产生安全隐患等问题,这都需要进行技术改造。
三、鲁奇加压气化炉的技术改造为了解决鲁奇加压气化炉存在的问题,需要进行一系列的技术改造。
首先是提高能源利用率,可以采用先进的燃烧技术,比如采用预热空气、燃料气化等方式提高燃料的燃烧效率。
其次是改进气体净化系统,可以采用先进的净化设备,比如静电除尘器、布袋除尘器等,对气体中的固体颗粒和有害气体进行有效处理。
对于鲁奇加压气化炉的操作系统也可以进行智能化改造,使用先进的控制系统和传感器,提高设备的自动化程度和安全性。
四、鲁奇加压气化炉技术改造的意义鲁奇加压气化炉技术改造不仅可以提高设备运行效率,减少能源消耗,减轻对环境的影响,也可以提高设备的安全性和稳定性,降低操作成本,提高生产效率,这对于企业的可持续发展具有重要意义。
Lurgi(鲁奇)加压⽓化炉简介Lurgi(鲁奇)加压⽓化炉简介鲁奇碎煤加压⽓化技术是20世纪30年代由联邦德国鲁奇公司开发的,属第⼀代煤⽓化⼯艺,技术成熟可靠,是⽬前世界上建⼚数量最多的煤⽓化技术。
正在运⾏的⽓化炉达数百台,主要⽤于⽣产城市煤⽓和合成原料⽓。
德国鲁奇加压⽓化炉压⼒2.5~4.0Mpa,⽓化反应温度800~900℃,固态排渣,以⼩块煤(对⼊炉煤粒度要求是6mm以上,且13mm以上占87%,6~13mm占13%)为原料、蒸汽-氧⽓连续送风制取中热值煤⽓。
⽓化床⾃上⽽下分⼲燥、⼲馏、还原、氧化和灰渣等层,产品煤⽓经热回收和除油,含有约10%~12%的甲烷和不饱和烃,适宜作城市煤⽓。
粗煤⽓经烃类分离和蒸汽转化后可作合成⽓,但流程长、技术经济指标差、对低温焦油及含酚废⽔的处理难度较⼤、环保问题不易解决。
鲁奇炉的技术特点有以下⼏个⽅⾯:1.固定⽓化床,固态排渣,适宜弱黏结性碎煤(5~50mm);2.⽣产能⼒⼤。
⾃⼯业化以来,单炉⽣产能⼒持续增长。
例如,1954年在南⾮沙索尔建⽴的10台内径为3.72m的⽓化炉,产⽓能⼒为1.53×104m3/(h·台);⽽1966年建设的3台,产⽓能⼒为2.36×104m3/(h·台);到1977年所建的13台⽓化炉,平均产⽓能⼒则达2.8×104m3/(h·台)。
这种持续增长主要是靠操作的不断改进。
3.⽓化炉结构复杂,炉内设有破黏、煤分布器、炉箅等转动设备,制造和维修费⽤⼤。
4.⼊炉煤必须是块煤,原料来源受⼀定限制。
5.出炉煤⽓中含焦油、酚等,污⽔处理和煤⽓净化⼯艺复杂、流程长、设备多,炉渣含碳5%左右。
⾄今世界上共建有107台炉⼦,通过扩⼤炉径和增设破黏装置后,提⾼了⽓化强度和煤种适应性。
煤种涉及到此烟煤、褐煤、贫煤,⽤途为F-T合成、天然⽓、城市煤⽓、合成氨,⽓化能⼒8000~100000m3/h,⽓化炉内径最⼤5.0m,装置总规模1100~11600t/d。
Lurgi(鲁奇)加压气化炉简介
鲁奇碎煤加压气化技术是20世纪30年代由联邦德国鲁奇公司开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂数量最多的煤气化技术。
正在运行的气化炉达数百台,主要用于生产城市煤气和合成原料气。
德国鲁奇加压气化炉压力2.5~4.0Mpa,气化反应温度800~900℃,固态排渣,以小块煤(对入炉煤粒度要求是6mm以上,且13mm以上占87%,6~13mm占13%)为原料、蒸汽-氧气连续送风制取中热值煤气。
气化床自上而下分干燥、干馏、还原、氧化和灰渣等层,产品煤气经热回收和除油,含有约10%~12%的甲烷和不饱和烃,适宜作城市煤气。
粗煤气经烃类分离和蒸汽转化后可作合成气,但流程长、技术经济指标差、对低温焦油及含酚废水的处理难度较大、环保问题不易解决。
鲁奇炉的技术特点有以下几个方面:
1.固定气化床,固态排渣,适宜弱黏结性碎煤(5~50mm);
2.生产能力大。
自工业化以来,单炉生产能力持续增长。
例如,1954年在南非沙索尔建立的10台内径为3.72m的气化炉,产气能力为1.53×104m3/(h·台);而1966年建设的3台,产气能力为2.36×104m3/(h·台);到1977年所建的13台气化炉,平均产气能力则达2.8×104m3/(h·台)。
这种持续增长主要是靠操作的不断改进。
3.气化炉结构复杂,炉内设有破黏、煤分布器、炉箅等转动设备,制造和维修费用大。
4.入炉煤必须是块煤,原料来源受一定限制。
5.出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多,炉渣含碳5%左右。
至今世界上共建有107台炉子,通过扩大炉径和增设破黏装置后,提高了
气化强度和煤种适应性。
煤种涉及到此烟煤、褐煤、贫煤,用途为F-T合成、天然气、城市煤气、合成氨,气化能力8000~100000m3/h,气化炉内径最大5.0m,装置总规模1100~11600t/d。
与UGI炉相比,鲁奇炉有效地解决了UGI炉单炉产气能力小的问题。
山西化肥厂单台气化炉最大生产能力达38000Nm3/h。
同时,由于在生产中使用了碎煤,也使煤的利用率得到相应提高。
但是,固定床的一些关键问题仍然没有得到解决。
鲁奇炉对煤种和煤质要求较高,只能使用弱黏结性烟煤和褐煤,灰熔点(氧化气氛)大于1500℃。
对强黏结性、热稳定性差、灰熔点低及粉状煤则难以使用。
第三代鲁奇炉在炉内增设了搅拌器用于破焦,但也仅局限于黏结性较小的煤种。
鲁奇气化工艺的另一个问题是进料用灰锁上、下阀的使用寿命。
长期以来这种阀门依赖进口,且最长使用寿命仅为5~6个月,明显增加了运行成本。
究其原因,真正的问题仍在于固定床气化工艺本身。