归纳与类比课件
- 格式:ppt
- 大小:1.67 MB
- 文档页数:7
归纳法:1.定义:从许多个别事例中获得一个较具概括性的规则。
这种方法主要从收集到既有的资料,加以抽丝剥茧地分析,最后得以做出一个概括性的结论。
2.特点:归纳法是依据若干已知的不完尽的现象推断上属未知的现象,因而结论具有猜测的性质;归纳法的前提是单个事实、特殊情陆,所以归纳是立足于观察、经验或实验的基础上的。
3.作用:归纳法在数学上是证明与自然数n有关的命题的以中国方法。
它包括两个步骤:(1)验证当n取第一个自然数值n=n1(n1=1,2或其他常数)时,命题正确;(2)假设当n取某一自然数k时命题正确,以此类推出当n=k+1时这个命题也正确。
从而就可断定命题对于从n1开始的所有自然数都成立。
类比法:1.定义:类比法是根据两个或两类事物在某些属性上相同或相似,而推出它们在其他属性上也相同或相似的推理方法。
它是一种从特殊到特殊的推理方法,属于一种横向思维。
2.特点:类比法是“先比后推”。
“比”是类比的基础,“比”既要共同点也要“比”不同定。
对象之间的共同点是类比法是否能够施行的前提条件,没有共同的对象之间是无法进行类比推理的。
类比不仅是一种从特殊到特殊的推理方法,也是一种探索解题思路、猜测问题答案或结论的一种有效方法。
这对数学教学中培养学生的创新能力和创造性思维能力有着极其重要的作用。
3.作用:类比法的作用是“由此及彼”。
如果把“此”看作是前提,“彼”看作是结论,那么类比思维的过程就是一个推理过程。
古典类比法认为,如果我们在比较过程中发现被比较的对象有越来越多的共同点,并且知道其中一个对象有某种情况而另一个对象还没有发现这个情况。
这时候人们头脑就有理由进行类推。
由此认定另一对象也应有这个情况。
现代类比法认为,类比之所以能够“由此及彼”,之间是经过了一个归纳和演绎程序的即:从已知的某个或某些对象具有某情况,经过归纳得出某类所有对象都具有这情况,然后再经过一个演绎得出另一个对象也具有这个情况。