归纳与类比
- 格式:doc
- 大小:75.00 KB
- 文档页数:1
演绎推理,归纳推理,类比推理的例子
以下是 7 条关于演绎推理、归纳推理、类比推理的例子:
1. 演绎推理呀,就好比说,所有人都会犯错,我是人,那我肯定也会犯错啦。
你看,这不就是从一般到特殊的过程嘛!就像警察根据线索一步步推断出犯罪嫌疑人一样!
2. 归纳推理呢,嘿,你想想,我观察了好多天,每天早上太阳都从东边升起,那我不就能归纳出太阳总是从东边升起这个结论嘛!这跟我们总结经验是不是很像呀!
3. 类比推理哦,哎呀,鸟有翅膀能飞,飞机也有类似翅膀的结构,所以飞机也能飞呀。
这就像我们把两个看似不同但有相似之处的东西放在一起比较呢!
4. 演绎推理就像走一条清晰的路,已知三角形内角和是 180 度,这一个三
角形是直角三角形,那不是一下就能推出另外两个角的度数啦!多直接呀!
5. 归纳推理呀,你看那些科学家研究了好多好多的案例,然后得出一个普遍的规律,不就像我们收集了好多糖果,然后总结出哪种糖果最好吃一样嘛!
6. 类比推理呢,就好比说船在水上航行,潜艇也在水里活动,那它们在某些方面是不是就有相似之处呀,多有意思呀!
7. 演绎推理就好像是按照菜谱做菜,菜谱说先放啥后放啥,你照做就能做出那道菜。
归纳推理是你吃了好多美食,然后总结出哪种口味你最喜欢。
类比
推理则像是把不同的东西联系起来,发现它们的奇妙之处!总之,这三种推理都超级重要的呢!。
归纳推理与类比推理异同点比较合情推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.在解决问题的过程中,合情推理具有猜侧和发表结论,探索和提供思路的作用.有利于创新意识的培养.在能力高考的要求下,推理方法就显得更加重要.在复习中要把推理方法形成自己的解决问题的意识,使得问题的解决有章有法,得心应手.合情推理包括归纳推理和类比推理一归纳推理和类比推理的联系:归纳推理与类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.由这两种推理得到的结论都不一定正确,其正确性有待进一步证明二归纳推理和类比推理的区别:一归纳推理1归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.说明:归纳推理的思维过程大致如下:2归纳推理的特点:(1归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.2由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.3归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.归纳推理是从个别事实中概括出一般原理的一种推理模型,归纳推理包括不完全归纳法和完全归纳法3归纳推理的一般步骤:①通过观察个别情况发现某些相同本质;②从已知的相同性质中推出一个明确表达的一般性命题.说明:归纳推理基于观察和实验,像“瑞雪兆丰年”等农谚一样,是人们根据长期的实践经验进行归纳的结果.物理学中的波义耳—马略特定律、化学中的门捷列夫元素周期表、天文学中开普勒行星运动定律等,也都是在实验和观察的基础上,通过归纳发现的.二类比推理(以下简称类比)1类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.2类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).3说明:类比推理的思维过程大致如下图所示:类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.类比推理不象归纳推理那样局限于同类事物,同时,类比推理比归纳推理更富于想像,因而也就更具有创造性人类在科学研究中建立的不少假说和教学中许多重要的定理,公式都是通过类比提出来的,工程技术中许多创造和发明也是在类比推理的启迪下而获得的.因此,类比推理已成为人类发现发明的重要工具例1如图,①,②,③,…是由花盆摆成的图案,根据图中花盆摆放的规律,第n个图形中的花盆数a n=.【答案】a n=3n2-3n1【解析】仔细观察发现:图案①的花盆数为:1个,a1=1;图案②的花盆中间数为3,上下两行都是2个,a2=232;图案③的花盆中间数为5,上面两行由下到上分别递减1个,而且关于中间行上下对称,a3=34543;……;可以猜想:第n个图形中的花盆中间数为2n-1,上面每行由下到上分别递减1个,最上面有n个,而且关于中间行上下对称,因此a n=nn1…2n-1…n1n=3n2-3n1【评析】上例是利用归纳推理解决问题的归纳推理分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现是十分有用的.观察、实验,对有限的资料作归纳整理,提出带有规律性的说法,乃是科学研究的最基本的方法之一例2如图,过四面体V-ABC的底面上任一点O分别作OA1∥VA,OB1∥VB,OC1∥VC,A1,B1,C1分别是所作直线与侧面交点.求证:为定值.分析考虑平面上的类似命题:“过△ABC(底)边AB上任一点O分别作OA1∥AC,OB1∥BC,分别交BC、AC于A1、B1,求证为定值”.这一命题利用相似三角形性质很容易推出其为定值1.另外,过A、O分别作BC垂线,过B、O分别作AC垂线,则用面积法也不难证明定值为1.于是类比到空间围形,也可用两种方法证明其定值为1.证明:如图,设平面OA1VA∩BC=M,平面OB1VB∩AC=N,平面OC1VC∩AB=L,则有△MOA1∽△MAV,△NOB1∽△NBV,△LOC1∽△LCV.得=。
归纳类比的例子
1. 你看那猫咪和老虎,不就像小孩和大人嘛!猫咪乖巧可爱,老虎威风凛凛,就如同小孩天真无邪,大人成熟稳重啊!
2. 把学习知识比作盖房子,基础知识不就是那一块块砖吗?没有稳固的砖,怎么能盖出高大的房子呢?
3. 生活中的困难就像一场暴风雨,我们得像勇敢的海燕一样去面对啊,难道不是吗?
4. 朋友间的友谊就如同阳光,能温暖彼此的心灵,哎呀,真的就是这样呀!
5. 她笑起来像朵盛开的花,那灿烂的笑容和花朵的娇艳不是很相似吗?
6. 一场精彩的比赛就像一顿丰盛的大餐,有各种滋味和惊喜,可不是吗?
7. 老师对学生的关怀简直就像妈妈对孩子,都是那么的无微不至啊!
8. 我们的成长历程就像是攀登高峰,一步一步努力向上,这不是很形象吗?
9. 爱情有时候像蜂蜜,甜甜蜜蜜的,让人沉醉其中,真的是这样啊!
观点结论:归纳类比真的能让我们更好地理解和感受世界啊,它就像一把钥匙,打开我们对事物认知的大门。
归纳法:1.定义:从许多个别事例中获得一个较具概括性的规则。
这种方法主要从收集到既有的资料,加以抽丝剥茧地分析,最后得以做出一个概括性的结论。
2.特点:归纳法是依据若干已知的不完尽的现象推断上属未知的现象,因而结论具有猜测的性质;归纳法的前提是单个事实、特殊情陆,所以归纳是立足于观察、经验或实验的基础上的。
3.作用:归纳法在数学上是证明与自然数n有关的命题的以中国方法。
它包括两个步骤:(1)验证当n取第一个自然数值n=n1(n1=1,2或其他常数)时,命题正确;(2)假设当n取某一自然数k时命题正确,以此类推出当n=k+1时这个命题也正确。
从而就可断定命题对于从n1开始的所有自然数都成立。
类比法:1.定义:类比法是根据两个或两类事物在某些属性上相同或相似,而推出它们在其他属性上也相同或相似的推理方法。
它是一种从特殊到特殊的推理方法,属于一种横向思维。
2.特点:类比法是“先比后推”。
“比”是类比的基础,“比”既要共同点也要“比”不同定。
对象之间的共同点是类比法是否能够施行的前提条件,没有共同的对象之间是无法进行类比推理的。
类比不仅是一种从特殊到特殊的推理方法,也是一种探索解题思路、猜测问题答案或结论的一种有效方法。
这对数学教学中培养学生的创新能力和创造性思维能力有着极其重要的作用。
3.作用:类比法的作用是“由此及彼”。
如果把“此”看作是前提,“彼”看作是结论,那么类比思维的过程就是一个推理过程。
古典类比法认为,如果我们在比较过程中发现被比较的对象有越来越多的共同点,并且知道其中一个对象有某种情况而另一个对象还没有发现这个情况。
这时候人们头脑就有理由进行类推。
由此认定另一对象也应有这个情况。
现代类比法认为,类比之所以能够“由此及彼”,之间是经过了一个归纳和演绎程序的即:从已知的某个或某些对象具有某情况,经过归纳得出某类所有对象都具有这情况,然后再经过一个演绎得出另一个对象也具有这个情况。
§1归纳与类比学习目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.知识点一归纳推理根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性的推理方法,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体,由个别到一般的推理.知识点二类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.知识点三合情推理1.合情推理的含义:合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.2.合情推理的过程从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想1.类比推理得到的结论可作为定理应用.(×)2.由个别到一般的推理为归纳推理.(√)3.在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×) 4.归纳推理是根据部分已知的特殊现象推断未知的一般现象.(√)一、归纳推理命题角度1等式、不等式中的归纳推理例1 (1)观察下列等式: 1+1=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5, …照此规律,第n 个等式为_________________________________. 答案 (n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)解析 观察规律可知,左边为n 项的积,最小项和最大项依次为(n +1),(n +n ),右边为连续奇数之积乘以2n ,则第n 个等式为(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1). (2)观察下列不等式:12×1≥1×12,13×⎝⎛⎭⎫1+13≥12⎝⎛⎭⎫12+14, 14×⎝⎛⎭⎫1+13+15≥13⎝⎛⎭⎫12+14+16, 15×⎝⎛⎭⎫1+13+15+17≥14⎝⎛⎭⎫12+14+16+18,试写出第n 个不等式. 解 第1个不等式为12×1≥1×12,即11+1×1≥1×12×1;第2个不等式为13×⎝⎛⎭⎫1+13≥12⎝⎛⎭⎫12+14, 即12+1×⎝ ⎛⎭⎪⎫1+12×2-1≥12⎝⎛⎭⎫12×1+12×2; 第3个不等式为14×⎝⎛⎭⎫1+13+15≥13⎝⎛⎭⎫12+14+16, 即13+1×⎝⎛⎭⎪⎫1+12×2-1+12×3-1≥13⎝⎛⎭⎫12×1+12×2+12×3; 第4个不等式为15×⎝⎛⎭⎫1+13+15+17≥ 14⎝⎛⎭⎫12+14+16+18; 即14+1×⎝ ⎛⎭⎪⎫1+12×2-1+12×3-1+12×4-1≥14⎝⎛⎭⎫12×1+12×2+12×3+12×4; 归纳可得第n 个不等式为1n +1×⎝⎛⎭⎪⎫1+13+15+…+12n -1≥1n ⎝⎛⎭⎫12+14+16+…+12n (n ∈N +). 命题角度2 图形中的归纳推理例2 有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是________.答案 31解析 有菱形纹的正六边形的个数如下表:图案 1 2 3 … 个数61116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31. 命题角度3 数列中的归纳推理例3 已知数列{a n }的前n 项和为S n ,且a 1=2,na n +1=S n +n (n +1).试归纳猜想数列{a n }的通项公式.解 由于a 1=2,且na n +1=S n +n (n +1). 令n =1,得a 2=S 1+1×2=a 1+2=2+2=4,令n =2,得2a 3=S 2+2×3=a 1+a 2+6=2+4+6=12,于是a 3=6,令n =3,得3a 4=S 3+3×4=a 1+a 2+a 3+12=2+4+6+12=24,于是a 4=8, 由此可以归纳得到数列{a n }的通项公式为a n =2n (n ∈N +). 反思感悟 归纳推理的一般策略(1)寻找关系:从已知的个别情形中寻找变化关系.(2)探究规律:从个别情形中探究一般规律,关键是条件发生变化时结论发生了怎样的变化. (3)归纳结论:根据探究所得规律,归纳一般性结论.跟踪训练1 (1)1+122<32,1+122+132<53,1+122+132+142<74,…,照此规律,第五个不等式为____________________________. 答案 1+122+132+142+152+162<116解析 观察不等式的左边发现,第n 个不等式的左边=1+122+132+…+1(n +1)2,右边=2(n +1)-1n +1,所以第五个不等式为1+122+132+142+152+162<116.(2)用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为________. 答案 6n +2解析 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一个以首项为8,公差是6的等差数列,所以第n 个“金鱼”图需要的火柴棒的根数为a n =8+(n -1)×6=6n +2.二、类比推理例4 (1)若数列{a n }(n ∈N +)是等差数列,则有数列b n =a 1+a 2+…+a nn(n ∈N +)也是等差数列;类比上述性质,相应地:若数列{c n }是等比数列,且c n >0,则有数列d n =________(n ∈N +)也是等比数列. 答案nc 1c 2c 3…c n解析 数列{a n }(n ∈N +)是等差数列,则有数列b n =a 1+a 2+…+a nn (n ∈N +)也是等差数列.类比猜想:若数列{c n }是各项均为正数的等比数列,则当d n =nc 1c 2c 3…c n (n ∈N +)时,数列{d n }也是等比数列.(2)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体P -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P -ABC 的体积为V ,则r 等于( ) A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4 答案 C解析 将△ABC 的三条边长a ,b ,c 类比到四面体P -ABC 的四个面面积S 1,S 2,S 3,S 4,将三角形面积公式中的系数12,类比到三棱锥体积公式中的系数13,从而可知选C.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V , 所以V =13S 1r +13S 2r +13S 3r +13S 4r ,故r =3VS 1+S 2+S 3+S 4.反思感悟 进行类比推理时,要注意比较两个对象的相同点和不同点,找到可以进行类比的两个量,然后加以推测,得到类比结果,最好能够结合相关的知识进行证明,以确保类比结果的合理性.跟踪训练2 在等差数列{a n }中,如果m ,n ,p ,r ∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明. 解 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r ∈N +,且m +n +p =3r ,那么必有b m b n b p =b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1q p -1,b r =b 1q r -1,于是b m b n b p =b 1q m -1·b 1q n -1·b 1q p -1=b 31q m +n +p -3=b 31q 3r -3=(b 1q r -1)3=b 3r,故结论成立.1.数列2,5,11,20,x ,47,…中的x 等于( ) A .28 B .32 C .33 D .27 答案 B解析 由以上各数可得每两个数之间依次差3,6,9,12,…,故x =20+12=32.2.已知不等式1>12,1+122>23,1+122+132>34,1+122+132+142>45,由此可猜测:若1+122+132+…+1122>m ,则m 等于( ) A.1112 B.2425 C.1213 D.1314 答案 C解析 由已知不等式可猜测1+122+132+…+1122>1213,因此m =1213.3.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可推知扇形面积公式S 扇等于( ) A.r 22 B.l 22C.lr 2 D .不可类比答案 C解析 扇形的弧类比三角形的底边,扇形的半径类比三角形的高,则S 扇=lr2.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间上,若两个正四面体的棱长的比为1∶2,则它们的体积比为________. 答案 1∶8解析 设两个正四面体的体积分别为V 1,V 2, 则V 1∶V 2=13S 1h 1∶13S 2h 2=S 1h 1∶S 2h 2=1∶8.5.按照图1、图2、图3的规律,第10个图中圆点的个数为________.答案 40解析 图1中的点数为4=1×4, 图2中的点数为8=2×4, 图3中的点数为12=3×4,…, 所以图10中的点数为10×4=40.1.知识清单:(1)归纳推理的定义、特征. (2)类比推理的定义、特征. 2.方法归纳:归纳、类比.3.常见误区:误以为合情推理的结论都正确.1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误 答案 B2.由1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,猜想得到1+3+…+(2n -1)等于( )A .nB .2n -1C .n 2D .(n -1)2 答案 C3.下面使用类比推理,得出的结论正确的是( )A .若“a ·3=b ·3,则a =b ”类比出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类比出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类比出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类比出“(a +b )n =a n +b n ” 答案 C解析 显然A ,B ,D 不正确,只有C 正确.4.观察图形规律,在其右下角的空格内画上合适的图形为( )A.B.C. D.答案 A解析观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.5.如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色为()A.白色B.黑色C.白色可能性大D.黑色可能性大答案 A解析由题图知,三白二黑周而复始相继排列,根据36÷5=7余1,可得第36颗与第1颗珠子的颜色相同,即白色.6.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是___________________________.答案表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大解析平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.7.观察下列等式:1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49,…照此规律,第n个等式为_____________________________________.答案n+(n+1)+…+(3n-2)=(2n-1)28.如图所示,由火柴拼成的一列图形中,第n个图形由n个正方形组成,通过观察可以发现:第4个图形中,有________根火柴;第n个图形中,有________根火柴.答案133n+19.已知数列{a n}的前n项和为S n,a1=3,满足S n=6-2a n+1(n∈N+).(1)求a 2,a 3,a 4的值; (2)猜想a n 的表达式.解 (1)因为a 1=3,且S n =6-2a n +1(n ∈N +), 所以S 1=6-2a 2=a 1=3,解得a 2=32,又S 2=6-2a 3=a 1+a 2=3+32,解得a 3=34,又S 3=6-2a 4=a 1+a 2+a 3=3+32+34,解得a 4=38.(2)由(1)知a 1=3=320,a 2=32=321,a 3=34=322,a 4=38=323,…,猜想a n =32n -1(n ∈N +).10.在圆x 2+y 2=r 2中,若AB 为直径,C 为圆上异于A ,B 的任意一点,则有k AC ·k BC =-1,用类比的方法得出椭圆x 2a 2+y 2b 2=1(a >b >0)中有什么样的结论?解 设A (x 0,y 0)为椭圆上的任意一点,则点A 关于中心对称的点B 的坐标为(-x 0,-y 0), 点P (x ,y )为椭圆上异于A ,B 两点的任意一点, 则k AP ·k BP =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20.因为A ,B ,P 三点都在椭圆上,所以⎩⎨⎧x 2a 2+y 2b 2=1,x 20a 2+y20b 2=1,两式相减有x 2-x 20a 2+y 2-y 2b2=0,故y 2-y 20x 2-x 20=-b 2a 2,即k AP ·k BP =-b 2a2.故椭圆x 2a 2+y 2b 2=1(a >b >0)中过中心的一条弦的两个端点A ,B ,P 为椭圆上异于A ,B 的任意一点,则有k AP ·k BP =-b 2a2.11.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111…A.1 111 110 B.1 111 111C.1 111 112 D.1 111 113答案 B解析由数塔猜测应是各位都是1的七位数,即1 111 111.12.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于() A.28 B.76 C.123 D.199答案 C解析利用归纳法:a+b=1,a2+b2=3,a3+b3=3+1=4,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.13.在等差数列{a n}中,若a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,公比q>1,则b4,b5,b7,b8的一个不等关系是()A.b4+b8>b5+b7B.b4+b8<b5+b7C.b4+b7>b5+b8D.b4+b7<b5+b8答案 A解析在等差数列{a n}中,因为当4+6=3+7时有a4·a6>a3·a7,在等比数列{b n}中,由于4+8=5+7,所以应有b4+b8>b5+b7.14.在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍,类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的________倍.答案 3解析 如图,在四面体A -BCD 中,E 为CD 的中点,连接AE ,BE ,且M ,N 分别为△ACD ,△BCD 的重心,AN ,BM 交于点G .在△ABE 中,M ,N 分别为AE ,BE 的三等分点, 则EM AE =EN BE =13, 所以MN ∥AB ,AB =3MN ,所以AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍.15.正整数按下表的规律排列,则上起第2 020行,左起第2 021列的数应为( )A .2 017×2 018B .2 018×2 019C .2 019×2 020D .2 020×2 021答案 D解析 由给出的排列规律可知,第一列的每个数为所在行数的平方,而第一行的数则满足列数减1的平方再加1,根据题意,左起第2 021列的第一个数为2 0202+1,由连线规律可知,上起第2 020行,左起第2 021列的数应为2 0202+2 020=2 020×2 021.16.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于点D ,有1AD 2=1AB 2+1AC2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确,并给出理由.解 类比AB ⊥AC ,AD ⊥BC ,可以猜想在四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD , 则1AE 2=1AB 2+1AC 2+1AD2. 猜想正确.理由如下:如图所示,连接BE ,并延长交CD 于点F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A ,∴AB ⊥平面ACD .而AF 平面ACD ,∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD2. ∴1AE 2=1AB 2+1AC 2+1AD 2,故猜想正确.。
归纳,类比,演绎推理的特点
1. 归纳呀,那简直就是从一堆具体事例中提炼精华!就好比你吃了好多美食,然后归纳出哪种口味是你最喜欢的!比如说,你看了好多部爱情电影,然后归纳出爱情电影里那些让人感动的情节往往都有啥特点。
哇塞,是不是很神奇呀?
2. 类比呀,就像是搭建了一座神奇的桥,让不同的事物产生联系!就好像说月亮像个大圆盘,把月亮和圆盘进行类比了呢!再比如,把我们的生活类比成一场冒险,有快乐也有困难,这样一下子就形象起来了,对不对?
3. 演绎推理那可是超级厉害的逻辑神器呀!就好像福尔摩斯破案一样,从一些线索一步一步推出真相。
比如说,知道所有人都会变老,而你是人,那就可以演绎推出你也会变老呀!这可不是超酷的嘛!
4. 归纳不就是把相似的东西放一块儿,找出共同点嘛!就跟整理房间似的,把同类型的东西放在一起,然后就知道自己有啥啦!像垃圾分类,不也是一种归纳嘛,把不同的垃圾归纳到不同的类别里呢。
5. 类比简直就是让你的思维飞起来!比如把老师比喻成园丁,一下子就明白老师的辛勤付出啦!或者说把心脏类比成发动机,这多形象呀,能让你一下子了解它的重要性。
6. 演绎推理就像是走一条清晰的路,按照逻辑一步步前进呀!比如知道鸟会飞,而这只动物是鸟,那就能推理出它会飞呀!是不是感觉特别有意思呢?
我觉得归纳、类比和演绎推理都好有趣呀,它们能让我们更深刻地理解世界,发现事物的本质和规律呢!。
1
1 1
2 3 1
6 11 6 1 24 50 35 10 1 ……………………………
归纳与类比
1.如图是斯特林数三角阵表,表中第r 行每一个 数等于它左肩上的数加上右肩上的数的1r -倍, 则此表中: (Ⅰ)第6行的第二个数是______________; (Ⅱ)第1n +行的第二个数是___________.(用n 表示) (1)274; (2)).131211(!n
n ++++ 提示:a (n,1)=(n-1)!,a (n+1,2)= a (n,1)+na (n,2). 2. 挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式一阿贝尔公式:
a 1
b 1+a 2b 2+a 3b 3+…+a n b n =a 1(b 1-b 2)+L 2(b 2-b 3)+L 3(b 3-b 4)+…+L n-1(b n-1-b n )+L n b n
则其中:(I)L 3= ;(Ⅱ)L n = .
提示:(Ⅰ)123a a a ++(Ⅱ)123n a a a a ++++
3. 如图表中数阵为“森德拉姆素数筛”,其特点是
每行每列都成等差数列,记第i 行第j 列的数为 *(,)ij a i j N ∈,则
(Ⅰ)99a = ;
(Ⅱ)表中数82共出现 次.
提示:通项公式a i,j =i +1+(j -1)i =ij +1. (Ⅰ)82.(Ⅱ)5.
4. 给出若干数字按下图所示排成倒三角形,其中第一
行各数
依次是1,2, 3 , …, 2013,从第二行起每一个数都等于它“肩上”两个数之和,最后一行只有一个数M ,则这个数M 是__________.
提示:1007×22012. M=102012C ⨯+212012C ⨯+3 +⨯22012C 201320122012
C ⨯ =20122012
2201212012201220121201202012201221()(C C C C C C ⨯++⨯+⨯++++ ) =22012+2012×22011=1007×22012. 第3题图 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙373125191373126211611625211713951916131074
13119753
7654321 2 3 ... 2011 2012 2013 3 5 ... 4023 4025 8 (8048)
… M。