高中数学必修5《数列:等差数列》
- 格式:doc
- 大小:132.00 KB
- 文档页数:3
等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。
等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。
—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。
≤d<3 D.<d≤36、。
在数列中,,且对任意大于1的正整数,点在直上,则=_____________。
第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
《等差数列》说课稿等差数列说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是《等差数列》。
一、说教材《等差数列》是高中数学必修 5 第二章数列中的重要内容。
数列作为一种特殊的函数,在实际生活中有着广泛的应用。
等差数列是数列中最基本的模型之一,它不仅是研究其他数列的基础,而且在数学和其他学科中都有着重要的地位。
通过对等差数列的学习,学生能够掌握一种常见的数学规律,提高观察、分析和解决问题的能力。
同时,等差数列的研究方法也为后续学习等比数列以及其他数学知识奠定了基础。
二、说学情我所面对的学生是高一年级的学生,他们在初中已经接触过数列的初步知识,具有一定的数学思维能力和逻辑推理能力。
但是,对于抽象的数学概念和复杂的数学运算,他们可能还存在一定的困难。
在日常的教学中,我发现学生对于数学公式的记忆比较机械,缺乏对公式的理解和灵活运用。
因此,在本节课的教学中,我将注重引导学生通过观察、归纳、类比等方法,自主探究等差数列的定义和通项公式,培养学生的数学思维能力和创新能力。
三、说教学目标基于对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解等差数列的定义,掌握等差数列的通项公式。
(2)能够运用等差数列的通项公式解决相关问题。
2、过程与方法目标(1)通过观察、分析、归纳等方法,培养学生的观察能力、分析能力和归纳能力。
(2)通过等差数列通项公式的推导,培养学生的逻辑推理能力和创新能力。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的信心。
(2)培养学生严谨的科学态度和勇于探索的精神。
四、说教学重难点教学重点:等差数列的定义和通项公式。
教学难点:等差数列通项公式的推导和应用。
五、说教法和学法为了实现教学目标,突破教学重难点,我将采用以下教法和学法:教法:启发式教学法、讲授法、讨论法。
学法:自主探究法、合作交流法。
六、说教学过程接下来,我将详细介绍本节课的教学过程,我把它分为以下几个环节:(一)创设情境,引入新课在上课之初,我会给学生讲一个小故事:有一天,小明去参加一个数学竞赛,竞赛中有这样一道题:一个数列 2,5,8,11,14,······,请问第 100 个数是多少?小明看到这道题后,一下子就懵了,他不知道该从哪里入手。
学习目标核心素养1.理解等差数列的概念,能在具体问题情境中,发现数列的等差关系.(重点)2.会推导等差数列的通项公式,并能应用该公式解决简单的等差数列问题.(重点)3.等差数列的证明及其应用.(难点)1.通过等差数列的通项公式的应用,提升数学运算素养.2.借助等差数列的判定与证明,培养逻辑推理素养.1.等差数列的概念如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.思考1:等差数列定义中,为什么要注明“从第二项起”?[提示] 第1项前面没有项,无法与前一项作差.思考2:等差数列定义中的“同一个”三个字可以去掉吗?[提示] 不可以.如果差是常数,而这些常数不相等,则不是等差数列.2.等差数列的通项公式对于等差数列{a n}的第n项a n,有a n=a1+(n—1)d=a m+(n—m)d.思考3:已知等差数列{a n}的首项a1和公差d能表示出通项公式a n=a1+(n—1)d,如果已知第m项a m和公差d,又如何表示通项公式a n?[提示] 设等差数列的首项为a1,则a m=a1+(m—1)d,变形得a1=a m—(m—1)d,则a n=a1+(n—1)d=a m—(m—1)d+(n—1)d=a m+(n—m)d.1.已知等差数列{a n}的首项a1=4,公差d=—2,则通项公式a n=()A.4—2nB.2n—4C.6—2nD.2n—6C[a n=a1+(n—1)d=4+(n—1)×(—2)=4—2n+2=6—2n.]2.等差数列—6,—3,0,3,…的公差d=________.3[(—3)—(—6)=3,故d=3.]3.下列数列:10,0,0,0;20,1,2,3,4;31,3,5,7,9;40,1,2,3,….其中一定是等差数列的有________个.3[123是等差数列,4只能说明前4项成等差数列.]4.在△ABC中,三内角A、B、C成等差数列,则B等于________.60°[因为三内角A、B、C成等差数列,所以2B=A+C,又因为A+B+C=180°,所以3B=180°,所以B=60°.]等差数列的判定与证明【例1】(1)在数列{a n}中,a n=3n+2;(2)在数列{a n}中,a n=n2+n.思路探究:错误!―→错误!―→错误![解] (1)a n+1—a n=3(n+1)+2—(3n+2)=3(n∈N*).由n的任意性知,这个数列为等差数列.(2)a n+1—a n=(n+1)2+(n+1)—(n2+n)=2n+2,不是常数,所以这个数列不是等差数列.1.定义法是判定(或证明)数列{a n}是等差数列的基本方法,其步骤为:(1)作差a n+1—a n;(2)对差式进行变形;(3)当a n+1—a n是一个与n无关的常数时,数列{a n}是等差数列;当a n+1—a n不是常数,是与n 有关的代数式时,数列{a n}不是等差数列.2.应注意等差数列的公差d是一个定值,它不随n的改变而改变.提醒:当n≥2时,a n+1—a n=d(d为常数),无法说明数列{a n}是等差数列,因为a2—a1不一定等于d.1.已知函数f(x)=错误!,数列{x n}的通项由x n=f(x n—1)(n≥2且x∈N*)确定.(1)求证:数列错误!是等差数列;(2)当x1=错误!时,求x2019.[解] (1)因为f(x)=错误!,数列{x n}的通项x n=f(x n—1),所以x n=错误!,所以错误!=错误!+错误!,所以错误!—错误!=错误!,所以错误!是等差数列.(2)x1=错误!时,错误!=2,所以错误!=2+错误!(n—1)=错误!,所以x n=错误!,所以x2019=错误!.等差数列的通项公式【例2】已知数列{a n}是等差数列,且a5=10,a12=31.(1)求{a n}的通项公式;(2)若a n=13,求n的值.思路探究:建立首项a1和d的方程组求a n;由a n=13解方程得n.[解] (1)设{a n}的首项为a1,公差为d,则由题意可知错误!解得错误!∴a n=—2+(n—1)×3=3n—5.(2)由a n=13,得3n—5=13,解得n=6.1.从方程的观点看等差数列的通项公式,a n=a1+(n—1)d中包含了四个量,已知其中的三个量,可以求得另一个量,即“知三求一”.2.已知数列的其中两项,求公差d,或已知一项、公差和其中一项的序号,求序号的对应项时,通常应用变形a n=a m+(n—m)d.2.已知递减等差数列{a n}前三项的和为18,前三项的积为66.求该数列的通项公式,并判断—34是该数列的项吗?[解] 依题意得错误!∴错误!解得错误!或错误!∵数列{a n}是递减等差数列,∴d<0.故取a1=11,d=—5.∴a n=11+(n—1)·(—5)=—5n+16,即等差数列{a n}的通项公式为a n=—5n+16.令a n=—34,即—5n+16=—34,得n=10.∴—34是数列{a n}的第10项.等差数列的应用[探究问题]1.若数列{a n}满足错误!=错误!+1且a1=1,则a5如何求解?[提示] 由错误!=错误!+1可知错误!—错误!=1.∴{错误!}是首项错误!=1,公差d=1的等差数列.∴错误!=1+(n—1)×1=n,∴a n=n2,∴a5=52=25.2.某剧场有20排座位,第一排有20个座位,从第2排起,后一排都比前一排多2个座位,则第15排有多少个座位?[提示] 设第n排有a n个座位,由题意可知a n—a n—1=2(n≥2).又a1=20,∴a n=20+(n—1)×2=2n+18.∴a15=2×15+18=48.即第15排有48个座位.【例3】某公司经销一种数码产品,第1年可获利200万元.从第2年起,由于市场竞争等方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?思路探究:分析题意,明确题中每年获利构成等差数列,把实际问题转化为等差数列问题,利用等差数列的知识解决即可.[解] 由题设可知第1年获利200万元,第2年获利180万元,第3年获利160万元,…,每年获利构成等差数列{a n},且当a n<0时,该公司会出现亏损.设从第1年起,第n年的利润为a n,则a n—a n—1=—20,n≥2,n∈N*.所以每年的利润可构成一个等差数列{a n},且首项a1=200,公差d=—20.所以a n=a1+(n—1)d=220—20n.若a n<0,则该公司经销这一产品将亏损,所以由a n=220—20n<0,得n>11,即从第起,该公司经销此产品将亏损.1.在实际问题中,若涉及到一组与顺序有关的数的问题,可考虑利用数列方法解决,若这组数依次成直线上升或下降,则可考虑利用等差数列方法解决.2.在利用数列方法解决实际问题时,一定要分清首项、项数等关键问题.3.甲虫是行动较快的昆虫之一,下表记录了某种类型的甲虫的爬行速度:时间t(s)123...? (60)距离s(cm)9.819.629.4…49…?(2)利用建立的模型计算,甲虫1min能爬多远?它爬行49 cm需要多长时间?[解] (1)由题目表中数据可知,该数列从第2项起,每一项与前一项的差都是常数9.8,所以是一个等差数列模型.因为a1=9.8,d=9.8,所以甲虫的爬行距离s与时间t的关系是s=9.8t.(2)当t=1min=60 s时,s=9.8t=9.8×60=588 cm.当s=49 cm时,t=错误!=错误!=5s.1.判断一个数列是否为等差数列的常用方法(1)a n+1—a n=d(d为常数,n∈N*)⇔{a n}是等差数列;(2)2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列;(3)a n=kn+b(k,b为常数,n∈N*)⇔{a n}是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n=a1+(n—1)d可以看出,只要知道首项a1和公差d,就可以求出通项公式,反过来,在a1,d,n,a n四个量中,只要知道其中任意三个量,就可以求出另一个量.1.判断正误(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)等差数列{a n}的单调性与公差d有关.()(3)若三个数a,b,c满足2b=a+c,则a,b,c一定是等差数列.()[答案] (1)×(2)√(3)√[提示] (1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d>0时为递增数列;d=0时为常数列;d<0时为递减数列.(3)正确.若a,b,c满足2b=a+c,即b—a=c—b,故a,b,c为等差数列.2.在等差数列{a n}中,若a1=84,a2=80,则使a n≥0,且a n+1<0的n为()A.21B.22C.23D.24B[公差d=a2—a1=—4,∴a n=a1+(n—1)d=84+(n—1)(—4)=88—4n,令错误!即错误!⇒21<n≤22.又∵n∈N*,∴n=22.]3.若数列{a n}满足a1=1,a n+1=a n+2,则a n=________.2n—1[由a n+1=a n+2,得a n+1—a n=2,∴{a n}是首项a1=1,d=2的等差数列,∴a n=1+(n—1)×2=2n—1.]4.已知数列{a n},a1=a2=1,a n=a n—1+2(n≥3),判断数列{a n}是否为等差数列?说明理由.[解] 因为a n=a n—1+2(n≥3),所以a n—a n—1=2(常数).又n≥3,所以从第3项起,每一项减去前一项的差都等于同一个常数2,而a2—a1=0≠a3—a2,所以数列{a n}不是等差数列.。
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。
二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。
三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】等差数列前n项和公式的推导和应用。
【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。
二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。
你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。
高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。
同时等差数列也为今后学习等比数列提供了学习比照的根据。
2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。
b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。
c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。
3、教学重点和难点重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。
学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
课题第三课时§2.1 等差数列(1)
教学目标知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题。
情感态度价值观:培养学生观察、归纳的能力,培养学生的应用意识。
重点难点理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题;
概括通项公式推导过程中体现出的数学思想方法。
教学
方法
指导自主探究
教学过程:
一、创设情境导入新课
上节课我们学习了数列。
在日常生活中,人口增长、鞋号问题、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。
今天我们就先学习一类特殊的数列。
先看下面的问题:
为了使孩子上大学有足够的费用,一对夫妇从小孩上初一的时候开始存钱,第一次存了5000元,并计划每年比前一年多存2000元。
若小孩正常考上大学,请问该家长后5年每年应存多少钱?
引导学生行先写出这个数列的前几项:7000,9000,11000,13000,15000
观察这个数列项的变化规律,提出生活中这样样问题很多,要解决类似的问题,我们有必要研究具有这样牲的数列——等差数列
二、师生互动新课探究
像这样的数列你能举出几个例子吗?
0,5,10,15,20,……① 18,15.5,13,10.5,8,5.5 ③
48,53,58,63 ② 3,3,3,3,3,……④
看这些数列有什么共同特点呢?(由学生讨论、分析)
引导学生观察相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于 5 ;
对于数列②,从第2项起,每一项与前一项的差都等于 5 ;
对于数列③,从第2项起,每一项与前一项的差都等于 -2.5 ;
对于数列④,从第2项起,每一项与前一项的差都等于 0 ;
由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。
三、归纳总结形成概念
对于以上几组数列我们称它们为等差数列。
请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:
1、等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d表示。
那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,0。
注意:从第二项起.....,后一项减去前一项的差等于同一个常数.....。
(1).名称:等差数列,首项 )(1a , 公差 )(d
(2).若0=d 则该数列为常数列
2.等差数列的通项公式:
d
a d d a d a a d a d d a d a a d
a a 3)2(2)(1134112312+=++=+=+=++=+=+= 由此归纳为 d n a a n )1(1-+= 当1=n 时 11a a = (成立) 注意:
(1)在d n a a n )1(1-+=中n ,n a ,1a ,d 四数中已知三个可以求出另一个。
(2)由上述关系还可得:d m n a a m n )(-+=
四、例题精析,新知应用
例1:判断下面数列是否为等差数列.
(1)12-=n a n (2)n n a )1(-=
例2:已知等差数列{}n a 中,2,11==d a ,求通项公式n a . 例3:(1)求等差数列9,5,1,……的第10项
(2)已知在等差数列{}n a ,34-=n a n ,求首项1a 和公差d
例4:已知在等差数列{}n a 中,35,20205-=-=a a ,求通项公式n a .
五、课堂练习、巩固新知
P13练习1、2、3;习题1—2A 组1
六、课堂小结,反思感悟
1、等差数列的定义d a a n n =-+1
2、掌握推导等差数列通项公式的方法
3、等差数列通项公式:d n a a n )1(1-+= d m n a a m n )(-+= 作业:P19 习题1—2A 组第2、7题 ;预习下节课。
板书设计:
1、等差数列的定义
2、掌握推导等差数列通项公式
的方法
3、等差数列通项公式:
例1 例2 例3 例4 教学反思:严控教师指导时间,掌控学生自主探究步调。