抽样推断的一般问题抽样误差
- 格式:doc
- 大小:166.00 KB
- 文档页数:5
第六章抽样推断习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 随机原则:是指在抽样时排出主观上有意识地抽取调查单位,每个单位以相同概率被取到,从而增强样本对总体的代表性。
2. 统计量:是反映样本特征的综合指标,随样本不同而取不同的值,具有随机性。
3. 随机变量:是指变量的值无法预先确定仅以一定的可能性取值的量。
4. 样本容量:是指样本中的总体单位数量。
5. 中心极限定理:是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。
这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。
6. 抽样平均误差:是反应抽样误差一般水平的指标,它的实质含义是指抽样平均数的标准差。
7. 区间估计:通过从总体中抽取的样本,根据一定的可行度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。
8. 简单随机抽样:也称为单纯随机抽样、纯随机抽样、SPS抽样,是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 抽样推断中,如果获取的样本数据准确,那么,由此推断的总体参数也一定准确。
(×)不一定2. 极限误差越大,则抽样估计的可靠性就越小。
(×)越大3. 抽样平均误差的大小与样本容量的大小成正比关系。
(×)反比4. 在一般的抽样推断中,抽样平均误差小于极限误差。
(×)不一定5. 重复抽样条件下的抽样平均误差,一定比不重复抽样条件下的抽样平均误差大。
(×)在其他条件相同的情况下6. 在不重复抽样的情况下,若调查的单位数为全及总体的10%,则所计算的抽样平均误差比重复抽样计算的抽样误差少10%。
抽样理论抽样误差与样本量的计算公式在统计学中,抽样是我们用来从整体中获取样本数据的一种方法。
然而,由于我们无法对整体进行完全调查,所以我们需要根据一部分样本数据来推断总体特征。
抽样误差是指由于样本抽取的随机性所引起的对总体特征的估计误差。
本文将介绍抽样理论中常用的抽样误差公式,并说明样本量的计算方法。
1. 抽样误差公式抽样误差是统计推断中的重要概念,它用来衡量样本数据对总体数据的估计精度。
抽样误差可以通过以下公式计算:抽样误差 = 抽样估计值 - 真实值抽样估计值是根据样本数据计算得出的统计量,例如均值、比例等。
真实值是指总体数据的真实数值。
在实际应用中,常用的抽样误差公式有标准误差公式和置信区间公式。
1.1 标准误差公式标准误差是样本统计量的抽样分布标准差。
如果我们假设样本数据满足正态分布,那么标准误差可以通过以下公式计算:标准误差 = 样本统计量的标准差 / 样本容量的平方根其中,样本统计量的标准差是指该统计量在抽样分布中的标准差,样本容量是指样本的大小。
例如,我们要估计某商品在全国范围内的销售量,并从中抽取了100个销售点的销售数据。
我们计算得出样本均值为2000,样本均值的标准差为100。
那么根据标准误差公式,我们可以计算出标准误差为:标准误差= 100 / √100 = 10这意味着我们对总体销售量的估计值平均偏差不超过10个单位。
1.2 置信区间公式置信区间是对总体特征的估计范围。
当我们进行统计推断时,我们通常希望给出一个置信水平,表示我们对估计值的信心程度。
置信区间可以通过以下公式计算:置信区间 = 抽样估计值 ±临界值 ×标准误差其中,临界值是根据所选置信水平和样本容量在统计表中查找得出的。
举例来说,我们希望估计某政党在全国范围内的支持率,并从中抽取了1000个选民的调查数据。
我们计算得出样本支持率为0.6,临界值为1.96(置信水平为95%)。
假设样本比例的标准误差为0.02,那么根据置信区间公式,我们可以计算出置信区间为:置信区间 = 0.6 ± 1.96 × 0.02 = 0.56 ~ 0.64这意味着我们以95%的置信水平估计,该政党的支持率在0.56到0.64之间。
统计推断抽样误差大小评估及控制方法统计推断是统计学中一项重要的技术,可以帮助我们从样本数据中推断总体的特征。
然而,在实际应用中,由于抽样误差的存在,我们需要对样本数据的可靠性进行评估,并采取相应的控制方法来减小抽样误差的大小。
本文将围绕这一主题展开,介绍统计推断抽样误差的评估和控制方法。
一、抽样误差的定义和影响因素抽样误差是指由于从总体中选取一部分样本,而使样本统计量与总体参数之间的差异。
抽样误差的大小直接影响到我们对总体特征的推断能力。
它的大小受到以下几个因素的影响:1. 样本容量:样本容量越大,抽样误差越小。
通常来说,当样本容量大于30时,中心极限定理可以保证样本的均值近似服从正态分布,从而减小了抽样误差的大小。
2. 总体的变异程度:总体变异越大,抽样误差越小。
如果总体中的个体差异较大,则从中抽取的样本更有可能代表整个总体。
3. 抽样方法:合理的抽样方法能够减小抽样误差的产生。
如简单随机抽样、分层抽样、整群抽样等,都可以在一定程度上降低抽样误差的大小。
二、抽样误差的评估方法为了确定抽样误差的大小,我们需要进行抽样误差的评估。
常用的抽样误差评估方法有以下几种:1. 置信区间:通过计算样本统计量的置信区间,可以确定总体参数的估计范围。
置信区间越窄,抽样误差越小。
2. 边界值计算:边界值是指满足给定置信度和抽样误差的最大样本容量。
通过计算边界值,可以对抽样误差进行评估。
3. 抽样误差率:抽样误差率是指样本统计量和总体参数之间的相对差异。
通过计算抽样误差率,可以评估抽样误差的大小。
三、抽样误差的控制方法为了减小抽样误差的大小,我们可以采取以下几种控制方法:1. 增加样本容量:样本容量的增加可以有效减小抽样误差的大小。
当样本容量足够大时,样本统计量的分布将更加接近总体参数的分布。
2. 优化抽样方法:选择合适的抽样方法可以降低抽样误差的大小。
例如,分层抽样可以根据总体的重要特征来确定抽样的分层,从而提高样本的代表性。