成都七中18届高一理科数学上期半期考试试题
- 格式:pdf
- 大小:330.60 KB
- 文档页数:4
2017-2018学年四川省成都市第七中学高一上学期半期考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1M =,{}0,2,3N =,则N M =I ( ) A .{}2 B .{}1 C .{}0 D .{}0,1 2.函数()()lg 1f x x =+的定义域为( )A .(]1,2-B .[]1,2-C .[)2,+∞D .(),1-∞- 3.下列函数为R 上的偶函数的是( )A .2y x x =+ B .133xx y =+C .1y x x=+ D .11y x x =--+4.集合(){},0C x y y x =-=,集合()11,222y x D x y y x ⎧⎫⎧=+⎪⎪⎪=⎨⎨⎬⎪⎪⎪=-⎩⎩⎭,则集合,C D 之间的关系为( )A .D C ∈B .CD ∈ C .C D ⊆ D .D C ⊆ 5.下列结论正确的是( )A2=- B .()lg 35lg5lg3+=+ C.2313⎛⎫-=⎪⎝⎭D .2ln 2log 5ln 5=6.下列各组函数中,表示同一组函数的是( )A .()2f x x =-,()2131x g x x -=-- B .()f x x=,()2g x =C.()f x =()g x x = D .()1f t t =-,()1,11,1x x g x x x -≥⎧=⎨-+<⎩7.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数31log 2100Ov =,单位是/m s ,其中O 表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数为( )A .100B .300C .3D .1 8.设 3.30.99a =,0.993.3b =, 3.3log 0.99c =,则( )A .c b a <<B .c a b <<C .a b c <<D .a c b << 9.函数1xy a =+(0a >且1a ≠),[],x kk ∈-,0k >的图象可能为( )A .B .C .D .10.方程()24250x m x m +-+-=的一根在区间()1,0-内,另一根在区间()0,2内,则m的取值范围是( ) A .5,53⎛⎫ ⎪⎝⎭ B .7,53⎛⎫-⎪⎝⎭ C .()5,5,3⎛⎫-∞+∞ ⎪⎝⎭U D .5,3⎛⎫-∞ ⎪⎝⎭11.函数()22f x x mx =-+,()0m >在[]0,2x ∈的最大值为9,则m 的值为( ) A .1或3 B .3或134 C .3 D .13412.已知函数()()22log ,022,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,函数()()F x f x a =-有四个不同的零点1234,,,x x x x 且满足:1234x x x x <<<,则223141212x x x x x x ++的取值范围为( )A .17257,416⎛⎤⎥⎝⎦ B .[)2,+∞ C .172,4⎛⎤⎥⎝⎦D .()2,+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知:12a a-+=,则22a a -+= .14.若幂函数()21my m m x =--⋅的函数图象经过原点,则m = . 15.设函数()()22log 32f x x x =+-,则()f x 的单调递增区间为 .16.已知()f x 为R 上的偶函数,当0x >时,()2log f x x =.对于结论(1)当0x <时,()()2log f x x =--;(2)函数()f f x ⎡⎤⎣⎦的零点个数可以为4,5,7; (3)若()02f =,关于x 的方程()()220f x mf x +-=有5个不同的实根,则1m =-;(4)若函数212y f ax x ⎛⎫=-+⎪⎝⎭在区间[]1,2上恒为正,则实数a 的范围是1,2⎛⎫+∞ ⎪⎝⎭. 说法正确的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.计算下列各式的值:(1)()11230.0082-+(2)5log 22225lg5lg 2lg2lg5log 5log 45+++⨯+18.已知函数()222,0,2,0.x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩(1)解不等式()3f x >;(2)求证:函数()f x 在(),0-∞上为增函数.19.已知集合{}24xA x R =∈<,(){}lg 4B x R y x =∈=-.(1)求集合,A B ;(2)已知集合{}11C x m x m =-≤≤-,若集合()C A B ⊆U ,求实数m 的取值范围. 20.《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?(2)假设某人的月收入为x 元,012500x ≤≤,记他应纳税为()f x 元,求()f x 的函数解析式.21.已知定义域为R 的函数()1231x a f x =-++是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(3)若对任意的()1,2t ∈,不等式()()222120f t t f t mt -+++-≤有解,求m 的取值范围.22.已知函数()f x 的定义域为()1,1-,对任意实数(),1,1x y ∈-,都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭.(1)若21m n f mn +⎛⎫=⎪+⎝⎭,11m n f mn -⎛⎫= ⎪-⎝⎭,且(),1,1m n ∈-,求()f m ,()f n 的值; (2)若a 为常数,函数()2lg 1x g x a x ⎛⎫=- ⎪+⎝⎭是奇函数, ①验证函数()g x 满足题中的条件;②若函数()(),11,1,11,g x x h x k x x x -<<⎧⎪=⎨+≤-≥⎪⎩或求函数()2y h h x =-⎡⎤⎣⎦的零点个数.成都七中学年上期2020届半期数学试卷(参考答案)一、选择题1-5:CABDC 6-10:DABCB 11、12:DA 二、填空题13.2 14.2 15.()1,1-注:(]1,1-也对 16.(2)(3) 三、解答题17.解:(1)()11230.0082-+=54110ππ+-+=- (2)5log 22225lg5lg 2lg2lg5log 5log 45+++⨯+()lg5lg2lg2lg5=++lg32lg 22lg 22lg3+⨯+=lg5lg 2124+++= 18.解:(1)当0x ≥时,由()223f x x x =+>,得2230x x +->,解得1x >或3x <-,又0x ≥, ∴1x >.当0x <时,由()223f x x x =-+>,得2230x x -+<,解得x ∈∅.综上所述,原不等式的解集为{}1x x >. (2)证明:设任意()12,,0x x ∈-∞,且12x x <.则()()()()2212112222f x f x x x x x -=-+--+ ()()22211222x x x x =-+-()()21212x x x x =-+-由12x x <,得210x x ->,由()12,,0x x ∈-∞,得2120x x +-<. 所以()()120f x f x -<,即()()12f x f x <. 所以函数()f x 在(),0-∞上为增函数. 19.解:(1)∵222x< ∴(),2A =-∞又∵()lg 4y x =-可知4x > ∴()4,B =+∞(2)∵()()(),24,A B =-∞+∞U U ,又∵()C A B ⊆U (i )若C =∅,即11m m ->-, 解得1m <,满足:()C A B ⊆U ∴1m <符合条件(ii )若C ≠∅,即1m m -≤-, 解得1m ≥,要保证:()C A B ⊆U14m ->或12m -<,解得3m <-(舍)或12m -<解得[)1,3m ∈综上:m 的取值范围为3m <20.解:(1)易知工资纳税是一个分段计费方式:(i )若该人的收入刚达到5000元,则其应纳税所得额为5000.0345⨯=元, 易知:其收入超过5000元;(ii )若该人的收入刚达到8000元,则30000.1300⨯=元, 易知:其应纳税所得额为:30045345350+=< 故其收入超过8000元;(iii )设其收入超过8000元的部分为x 元,易知0.25x =元,解得25x = 则其10月份的工资收入是8025元.(2)易知他应交此项税款()f x 为是一个分段函数()()()()0,03500,0.033500,35005000,0.1500045,50008000,0.28000345,800012500,x x x f x x x x x ≤≤⎧⎪⨯-<≤⎪=⎨⨯-+<≤⎪⎪⨯-+<≤⎩整理可得:()0,03500,0.03105,35005000,0.1455,50008000,0.21255,800012500,x x x f x x x x x ≤≤⎧⎪-<≤⎪=⎨-<≤⎪⎪-<≤⎩21.解:(1)由()f x 为奇函数,可知:()00f =,解得1a =.(2)()11231x f x =-++,易知31x +为单调递增函数,131x +为单调递减函数, ∴()11231x f x =-++单调递减的函数.证明:设12x x >,()()12121111231231x x f x f x ⎛⎫-=-+--+ ⎪++⎝⎭()()211212113331313131x x x x x x -=-=++++ ∵13110x+>>,同理23110x+>>, ∵21x x <,∴21330xx-<,∴()()21123303131x x xx -<++,∴()()120f x f x -<,∴()()12f x f x <, ∴()f x 在R 上单调递减(3)任意的()1,2t ∈,()()222120f t t f t mt -+++-≤ 可得()()22212f t t f t mt -++≤--()22f mt t =-由单调性易知:22212t t mt t -++≥- ∴221mt t t ≤-++ 可得121m t t≤-++有解,∴易知111,12t t⎛⎫-++∈- ⎪⎝⎭ 故21m <,解得12m <. 22.解:(1)对题中条件取0x y ==,得()00f =.再取y x =-,得()()()00f x f x f +-==,则()()f x f x -=-, 即函数()f x 在()1,1-内为奇函数. 所以()()()()11m n f f m f n f m f n mn -⎛⎫=+-=-=⎪-⎝⎭,又()()21m n f f m f n mn +⎛⎫=+=⎪+⎝⎭.解得()32f m =,()12f n =. (2)由函数()2lg 1x g x a x ⎛⎫=-⎪+⎝⎭是奇函数,得()0lg 0lg1g a ===,则1a =. 此时()21lg 1lg 11x xg x x x -⎛⎫=-= ⎪++⎝⎭,满足函数()g x 是奇函数,且()00g =有意义. ①由101xx ->+,得11x -<<,则对任意实数(),1,1x y ∈-, 有()()11lglg =1+1x y g x g y x y --+=++111lg =lg 1+11x y x y xyx y x y xy ⎛⎫----+⋅ ⎪++++⎝⎭, 11lg 111x yx y xy g x y xy xy+-⎛⎫++== ⎪++⎝⎭++1lg 1x y xy x y xy --++++, 所以()()1x y g x g y g xy ⎛⎫++=⎪+⎝⎭.②由()20y h h x =-=⎡⎤⎣⎦,得()2h h x =⎡⎤⎣⎦,令()t h x =,则()2h t =. 作出图象由图可知,当0k ≤时,只有一个10t -<<,对应有3个零点; 当1k >时,只有一个t ,对应只有一个零点;当01k <≤时,112k <+≤,此时11t <-,210t -<<,311t k=≥.由2111k k k k k +-+-==1k k k ⎛ ⎝⎭⎝⎭1k <≤时,11k k +>,三个t 分别对应一个零点,共3个.在102k <≤时,11k k +≤,三个t 分别对应1个,1个,3个零点,共5个.综上所述,当1k >时,函数()2y h h x =-⎡⎤⎣⎦只有1零点;当0k ≤或112k <≤时,函数()2y h h x =-⎡⎤⎣⎦有3零点;当102k <≤是,函数()2y h h x =-⎡⎤⎣⎦有5零点.。
四川省成都七中2018-2019学年高一(上)期中数学试卷★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(本大题共12小题,共60.0分)1.若集合M={x|x≤6},a=2,则下面结论中正确的是()A. B. C. D.【答案】A【解析】【分析】元素a与集合M是与的关系,集合与集合M是与的关系,逐个选项判断符号使用是否正确即可.【详解】解:由集合M={x|x≤6},a=2,知:在A中,{a}M,故A正确;在B中,a M,故B错误;在C中,{a}⊆M,故C错误;在D中,a M,故D错误.故选:A.【点睛】本题考查属于与包含于符号的区别,属于基础题.2.已知幂函数f(x)=x a(a是常数),则()A. 的定义域为RB. 在上单调递增C. 的图象一定经过点D. 的图象有可能经过点【答案】C【解析】【分析】幂函数f(x)=x a的定义域和单调性都与幂指数a有关,过定点(1,1),易选得A. 【详解】解:(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.【点睛】本题考查了幂函数的图像与性质,属于基础题.3.已知函数g(x)=,函数f(x)=|x|•g(x),则f(-2)=()A. 1B.C. 2D. 【答案】D【解析】【分析】直接代入x=-2,求出f(-2)的值.【详解】解:因为函数g(x)=,函数f(x)=|x|•g(x),所以f(-2)=|-2|•g(-2)=2×(-1)=-2.故选:D.【点睛】本题考查了分段函数的取值,属于基础题.4.函数f(x)=-lnx的定义域为()A. B.C. 或D.【答案】B【解析】【分析】结合根式和对数的有意义得出关系式,解出x范围即为定义域.【详解】解:因为f(x)有意义,则;解得x≥1;∴f(x)的定义域为:{x|x≥1}.故选:B.【点睛】本题考查了根式和对数函数的定义域,属于基础题.5.若函数y=f(x)的定义域为{x|-3≤x≤8,x≠5,值域为{y|-1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B【解析】由图象知,选项中定义域不是,排除,选项中,出现一个对应三个,所以不是函数,故排除,故选B.6.设a=2,b=,c=()0.3,则()A. B. C. D.【答案】A【解析】【分析】由指数和对数函数的性质判断a、c、b的范围,然后比较大小即可.【详解】解:a=2<=0,b=>=1,0<c=()0.3<()0=1,所以a<c<b.故选:A.【点睛】本题考查了指数和对数函数的性质,属于基础题.7.若f(x)=4x2-kx-8在[5,8]上为单调递减函数,则k的取值范围是()A. B.C. D.【答案】B【解析】【分析】结合二次函数的开口和对称轴很容易判断函数单调性,再由函数在[5,8]上为单调递减得出不等关系解出答案.【详解】解:二次函数f(x)=4x2-kx-8开口向上,对称轴x=,因为函数f(x)=在[5,8]上为单调递减函数所以对称轴x=,解得k≥64.故选:B.【点睛】本题考查了二次函数的图像与性质,属于基础题.8. 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y="[x](" [x]表示不大于x的最大整数)可以表示为【】A. B. C. D.【答案】B【解析】试题分析:根据规定每人推选一名代表,当各班人数除以的余数大于时增加一名代表,即余数分别为时可以增选一名代表,也就是要进一位,所以最小应该加,因此利用取整函数可表示为,也可以用特殊取值法,若,排除C,D,若,排除A,故选B.考点:函数的解析式及常用方法.【方法点晴】本题主要考查了函数的解析式问题,其中解答中涉及到取整函数的概念,函数解析式的求解等知识点的考查,着重考查了学生分析问题和解答问题的能力,此类问题的解答中主要是读懂题意,在根据数学知识即可得到答案,对于选择题要选择最恰当的方法,试题有一定的难度,属于中档试题.9.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),f(1)=2,则f (-1)+f(3)=()A. 4B. 0C.D.【答案】D【解析】【分析】先由奇函数求出f(-1)=-f(1)=-2,再由f(1-x)=f(1+x)得到函数对称性求出f (3)=f(-1)=-f(1)=-2,然后看计算答案.【详解】解:根据题意,f(x)是定义域为(-∞,+∞)的奇函数,且f(1)=2,则f(-1)=-f(1)=-2,又由f(x)满足f(1-x)=f(1+x),则函数f(x)的对称轴为x=1,则f(3)=f(-1)=-f(1)=-2,则(-1)+f(3)=-4;故选:D.【点睛】本题考查了函数的奇偶性和对称性,属于基础题.10.若函数f(x)=(k-1)a x-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)的图象是()A. B.C. D.【答案】A【解析】【分析】根据函数是一个奇函数,函数在原点处有定义,得到函数的图象一定过原点,求出k的值,根据函数是一个减函数,得出底数的范围,得到结果.【详解】∵函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上是奇函数,∴f(0)=0∴k=2,又∵f(x)=a x﹣a﹣x为减函数,所以1>a>0,所以g(x)=log a(x+2),定义域为,且递减,故选A.【点睛】本题考查函数奇偶性和单调性,即对数函数的性质,本题解题的关键是看出题目中所出现的两个函数性质的应用.11.已知函数f(x)=,对任意的x1,x2≠±1且x1≠x2,给出下列说法:①若x1+x2=0,则f(x1)-f(x2)=0;②若x1•x2=1,则f(x1)+f(x2)=0;③若1<x2<x1,则f(x2)<f(x1)<0;④若()g(x)=f(),且0<x2<x1<1.则g(x1)+g(x2)=g(),其中说法正确的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】【分析】①和②直接用x1表示x2,代入计算即可;③中先对函数进行分离常数得f(x)=-1-,判断出函数在区间(1,+∞)单调递增,然后可得f(x2)<f(x1)<0正确;④中先求出g(x)=,再代入计算化简即可.【详解】解:函数f(x)=,①若x1+x2=0,则f(x1)-f(x2)==0,故①正确;②若x1•x2=1,则x2=,f(x1)+f(x2)=+=0,故②正确;③f(x)==-1-在x>1递增,可得若1<x2<x1,则f(x2)<f(x1)<0,故③正确;④若()g(x)=f()=,即g(x)=,且0<x2<x1<1.则g(x1)+g(x2)=+=.g()=即有g(x1)+g(x2)=g(),故④正确.故选:D.【点睛】本题考查了函数解析式的化简运算,分式函数单调性,分式函数中分子分母次数相同时常采用分离常数法处理.12.设函数f(x)=,若对任意给定的m∈(1,+∞),都存在唯一的x0∈R满足f(f(x0))=2a2m2+am,则正实数a的取值范围为()A. B. C. D.【答案】A【解析】【分析】先画出函数f(x)图像,记t=f(x0),存在唯一的x0,所以必有t>1,所以f(t)=2a2m2+am >1对任意给定的m∈(1,+∞)恒成立,因式分解得(ma+1)(2ma-1)>0,因为ma+1>0,所以2ma-1>0恒成立,代入m=1即可.【详解】解:作出函数f(x)的图象如图:由图象知当x>0时,f(x)=log2x的值域为R,当-1≤x≤0,f(x)的取值范围为[0,1],当x<-1时,f(x)的取值范围是(-∞,1),即由图象知当f(x)≤1时,x的值不唯一,设t=f(x0),当x>0时,由f(x)=log2x≥1得x≥2,则方程f(f(x0))=2a2m2+am,等价为f(t)=2a2m2+am,因为2a2m2+am>0所以若存在唯一的x0∈R满足f(f(x0))=2a2m2+am,则t>1,即由f(x)=log2x>1得x>2,即当x>2时,f(f(x))与x存在一一对应的关系,则此时必有f(f(x))>1,即2a2m2+am>1,得(ma+1)(2ma-1)>0,因为ma+1>0,所以不等式等价为2ma-1>0,设h(m)=2ma-1,因为m>1,a>0,所以只要h(1)≥0即可,得2a-1≥0,得a≥,即实数a的取值范围是[,+∞).故选:A.【点睛】本题考查了复合函数与分段函数,函数的恒成立与能成立,综合性较强,分段函数常借助函数图像进行处理,复合函数一般采用换元法.二、填空题(本大题共4小题,共20.0分)13.设集合A={0,1,2},B={2,3},则A∪B=______.【答案】{0,1,2,3}【解析】【分析】由集合A、B可直接写出A∪B.【详解】解:设集合A={0,1,2},B={2,3},则A∪B={0,1,2,3}故答案为:{0,1,2,3}.【点睛】本题考查了集合的并集运算,属于基础题.14.函数y=1+log a(x+2)(a>0且a≠1)图象恒过定点A,则点A的坐标为______.【答案】(-1,1)【解析】【分析】由对数函数的性质log a1=0,所以令x+2=1,可知y=1.【详解】解:由对数函数的性质,令x+2=1可知y=1所以y=1+log a(x+2)(a>0且a≠1)图象恒过定点A(-1,1),故答案为:(-1,1).【点睛】本题考查了对数函数的定点问题,对数函数定点需要把握住log a1=0进行解决. 15.已知函数f(x)(对应的曲线连续不断)在区间[0,2]上的部分对应值如表:由此可判断:当精确度为0.1时,方程f(x)=0的一个近似解为______(精确到0.01)【答案】1.41(答案不唯一)【解析】【分析】先由表中观察到f(1.406)f(1.431)<0,且函数图像连续,所以在(1.406,1.431)上必有零点,再精确到0.01即可.【详解】解:由所给的函数值的表格可以看出,在x=1.406与x=1.431这两个数字对应的函数值的符号不同,即f(1.406)f(1.431)<0,∴函数的零点在(1.406,1.431)上,故当精确度为0.1时,方程f(x)=0的一个近似解为1.41故答案为:1.41(答案不唯一).【点睛】本题考查了零点存在定理,属于基础题.16.函数f(x)为定义在(0,+∞)上的单调递增函数,且f(x)•f(f(x)+)=1,则f (-1)=______.【答案】【解析】【分析】先换元记f(x)=t,用反证法证出t≤1,因为f(t+)=,用t+替换x代入方程f(x)•f (f(x)+)=1得f(+)=t=f(x),所以+=x,即x2t2-xt-1=0,代入x=-1,解出t即可.【详解】解:设f(x)=t,若t>1,则f(t+)>1因为f(x)在(0,+∞)上的单调递增函数,所以1=tf(t+)>t,即与t>1矛盾,所以t≤1,则方程等价为tf(t+)=1,即f(t+)=,令t+替换x代入方程f(x)•f(f(x)+)=1,得f(t+)•f(f(t+)+)=1,即•f(+)=1,即f(+)=t=f(x),即+=x,整理得x2t2-xt-1=0代入x=-1,解得t=或t=>1(舍)所以f(-1)=故答案为:【点睛】本题考查了复合函数和抽象函数,综合性较强,复合函数一般可用换元法处理.三、解答题(本大题共6小题,共70.0分)17.计算:(Ⅰ)-(-2)0-+(1.5)-2;(Ⅱ)+lg2-log48.【答案】(Ⅰ);(Ⅱ)【解析】【分析】(1)利用分数指数幂直接化简;(2)利用换底公式进行化简运算即可.【详解】(Ⅰ)-(-2)0-+(1.5)-2==(Ⅱ)+lg2-log48=lg5+lg2-+2=1-=.【点睛】本题考查了分数指数幂的运算,对数的运算,属于基础题.18.已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+(m-2)(m+2)≤0,x∈R,m∈R}.(Ⅰ)若A∩B=[0,3],求实数m的值;(Ⅱ)若A⊆∁R B,求实数m的取值范围.【答案】(Ⅰ)m=2;(Ⅱ)m>5或m<-3【解析】【分析】(1)先通过解不等式求出集合A和B,因为A∩B=[0,3],列出关系式,求出m;(2)写出∁R B,因为A⊆∁R B,列出关系式,可求出m范围.【详解】(Ⅰ)A={x|x2-2x-3≤0,x∈R}={x|-1≤x≤3}B={x|x2-2mx+(m-2)(m+2)≤0 }={x|m-2≤x≤m+2}因为A∩B=[0,3]所以,即所以m=2(Ⅱ)因为B={x|m-2≤x≤m+2}.所以∁R B={x|x>m+2或x<m-2}要使A⊆∁R B,则3<m-2或-1>m+2,解得m>5或m<-3,即实数m的取值范围是m>5或m<-3.【点睛】本题考查了集合的运算,集合间的包含关系,属于基础题.19.设函数f(x)=x k(k∈R,且为常数).(Ⅰ)当k=3时,判断函数f(x)的奇偶性,并证明;(Ⅱ)当k=1时,设函数g(x)=f(x)-,利用函数的单调性的定义证明函数y=g(x)在x∈(0,+∞)为单调递增函数.【答案】(1)见解析;(2)见解析【解析】【分析】(1)代入k=3时,f(x)=x3,因为f(-x)=-f(x),所以为奇函数;(2)代入k=1,得f (x)=x,g(x)=x-,设0<x2<x1,作差f(x1)-f(x2)化简后通过判断其正负来确定单调性.【详解】(1)∵k=3时,f(x)=x3定义域为R,∴f(-x)=(-x)3=-x3=-f(x),则f(x)为奇函数.(2)当k=1时,f(x)=x,g(x)=x-,设0<x2<x1,则f(x1)-f(x2)=x1--x2+=x1-x2+()=,因为0<x2<x1,所以x1x2>0,x1-x2>0,即f(x1)-f(x2)>0,则f(x1)>f(x2),即g(x)在(0,+∞)上是增函数.【点睛】本题考查了函数奇偶性得判断,单调性的证明,属于基础题.20.著名英国数学和物理学家IssacNewton(1643年-1727年)曾提出了物质在常温环境下温度变化的冷却模型.把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,tmin后物体温度θ℃,可由公式θ=θ0+(θ1-θ0)e-kt(e为自然对数的底数)得到,这里k是一个随着物体与空气的接触状况而定的正的常数.现将一个原来温度为62℃的物体放在15℃的空气中冷却,1min以后物体的温度是52℃.(Ⅰ)求k的值(精确到0.01);(Ⅱ)该物体从原来的62℃开始冷却多少min后温度是32℃?(参考数据:ln≈-0.24,ln≈-0.55,ln≈-1.02)【答案】(Ⅰ)k=0.24;(Ⅱ)t=4.25【解析】【分析】(1)因为θ=θ0+(θ1-θ0)e-kt,代入θ1=62,θ0=15,t=1,θ=52,得到方程解出k即可;(2)由(1)和题中数据得32=15+47e-0.24t,解出t即可.【详解】解:(Ⅰ)由题意可知,θ1=62,θ0=15,t=1,θ=52,所以52=15+(62-15)e-k,化简得:k=-ln,因为ln≈-0.24,所以k=0.24;(Ⅱ)由(I)可知θ=15+47e-0.24t,所以当θ=32时,32=15+47e-0.24t,解得:t=4.25.【点睛】本题考查了函数模型的应用,属于基础题.21.已知函数g(x)对一切实数x,y∈R都有g(x+y)-g(y)=x(x+2y-2)成立,且g(1)=0,h(x)=g(x+1)+bx+c(b,c∈R),f(x)=(Ⅰ)求g(0)的值和g(x)的解析式;(Ⅱ)记函数h(x)在[-1,1]上的最大值为M,最小值为m.若M-m≤4,当b>0时,求b的最大值;(Ⅲ)若关于x的方程f(|2x-1|)+-3k=0有三个不同的实数解,求实数k的取值范围.【答案】(Ⅰ)g(x)=x2-2x+1;(Ⅱ)2;(Ⅲ)(0,+∞)【解析】【分析】(1)令x=1,y=0得g(1)-g(0)=-1,又g(1)=0,得g(0)=1,再令y=0可得g(x)=x2-2x+1;(2)由(1)得h(x)=g(x+1)+bx+c=x2+bx+c,分-<-1和-1≤-<0讨论函数的最值,结合M-m≤4确定b的范围;(3)令|2x-1|=t,化简得方程t2-(2+3k)t+(1+2k)=0,(t>0),结合题意和t=|2x-1|的图象知方程有两解,且0<t1<1<t2或0<t1<1,t2=1,分类结合二次函数零点的分布求解k的范围即可.【详解】(Ⅰ)令x=1,y=0得g(1)-g(0)=-1,因为g(1)=0,所以g(0)=1,令y=0得g(x)-g(0)=x(x-2),所以g(x)=x2-2x+1.(Ⅱ)h(x)=g(x+1)+bx+c=x2+bx+c.①当-<-1,即b>2时,M-m=h(1)-h(-1)=2b>4,与题设矛盾②当-1≤-<0时,即0<b≤2时,M-m=h(1)-h(-)=(+1)2≤4恒成立,综上可知当0<b≤2时,b的最大值为2.(Ⅲ)当x=0时,2x-1=0则x=0不是方程的根,方程f(|2x-1|)+-3k=0可化为:|2x-1|2-(2+3k)|2x-1|+(1+2k)=0,|2x-1|≠0,令|2x-1|=t,则方程化为t2-(2+3k)t+(1+2k)=0,(t>0),因为方程f(|2x-1|)+-3k-1=0有三个不同的实数解,由t=|2x-1|的图象知,t2-(2+3k)t+(1+2k)=0,(t>0),有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1.记h(t)=t2-(2+3k)t+(1+2k),则,此时k>0,或,此时k无解,综上实数k的取值范围是(0,+∞).【点睛】本题考查了抽象函数解析式的求法,二次函数的最值,函数的零点,复合函数用换元法,函数零点问题可结合函数图像分析.22.对数函数g(x)=1og a x(a>0,a≠1)和指数函数f(x)=a x(a>0,a≠1)互为反函数.已知函数f(x)=3x,其反函数为y=g(x).(Ⅰ)若函数g(kx2+2x+1)的定义域为R,求实数k的取值范围;(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;(Ⅲ)定义在I上的函数F(x),如果满足:对任意x∈I,总存在常数M>0,都有-M≤F(x)≤M成立,则称函数F(x)是I上的有界函数,其中M为函数F(x)的上界.若函数h(x)=,当m≠0时,探求函数h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范围,若不存在,请说明理由.【答案】(Ⅰ)k>1;(Ⅱ)4;(Ⅲ)见解析【解析】【分析】(Ⅰ)因为g(x)=1og a x与f(x)=3x,互为反函数,所以a=3,得g(kx2+2x+1)= log3(kx2+2x+1)的定义域为R,所以kx2+2x+1>0恒成立,可求解k的范围;(Ⅱ)由|g(x1)|=|g(x2)|,得|log3x1|=|log3x2|,分析化简得x1x2=1,4x1+x2=4x1+,利用双勾函数求其最值;(Ⅲ)由h (x)==-1+,分m>0和m<0分别求出h(x)的取值范围,然后讨论其上下界.【详解】(Ⅰ)由题意得g(x)=log3x,因为g(kx2+2x+1)=log3(kx2+2x+1)的定义域为R,所以kx2+2x+1>0恒成立,当k=0时不满足条件,当k≠0时,若不等式恒成立,则,即,解得k>1;(Ⅱ)由|g(x1)|=|g(x2)|,得|log3x1|=|log3x2|,因为0<x1<x2,所以0<x1<1<x2,且-log3x1=log3x2,所以log3x1+log3x2=log3x1x2=0,所以x1x2=1,所以则4x1+x2=4x1+,0<x1<1,因为函数y=4x+在(0,)上单调递减,在(,1)上单调递增,所以当x1=时,4x1+x2取得最小值为4.(Ⅲ)h(x)==-1+,(m≠0),(i)当m>0,1+m3x>1,则h(x)在[0,1]上单调递减,所以≤h(x)≤,①若||≥||,即m∈(0,]时,存在上界M,M∈[||,+∞),②若||<||,即m∈(,+∞)时,存在上界M,M∈[||,+∞),(ii)当m<0时,①若-<m<0时,h(x)在[0,1]上单调递增,h(x)∈[,],存在上界M,M∈[,+∞),②若m=-时,h(x)=-1+在[0,1]上单调递增,h(x)∈[2,+∞),故不存在上界.③若-1<m<-时,h(x)在[0,log3(-))上单调递增,h(x)在(log3(-),1]上单调递增,h(x)∈(-∞,]∪[,+∞)故不存在上界,④若m=-1,h(x)=-1+在(0,1]上单调递增,h(x)∈(-∞,-2],故不存在上界⑤若m<-1,h(x)在[0,1]上单调递增,h(x)∈[,],而<0,存在上界M,M∈[||,+∞);综上所述,当m<-1时,存在上界M,M∈[||,+∞),当-1≤m≤-时,不存在上界,当-<m<0时,存在上界M,M∈[,+∞),当m∈(0,]时,存在上界M,M∈[||,+∞),当m∈(,+∞)时,存在上界M,M∈[||,+∞).【点睛】本题考查了反函数的概念,对数函数的定义域,恒成立问题与分类讨论,综合性较强,属于难题.。
四川省成都七中2018年10月2018~2019学年度高一上学期期中数学试卷一、选择题(本大题共12小题,共60.0分)1.若集合M={x|x≤6},a=2,则下面结论中正确的是( )A. B. C. D.【试题参考答案】A【试题分析】元素a与集合M是与的关系,集合与集合M是与的关系,逐个选项判断符号使用是否正确即可.【试题解答】解:由集合M={x|x≤6},a=2,知:在A中,{a}M,故A正确;在B中,a M,故B错误;在C中,{a}⊆M,故C错误;在D中,a M,故D错误.故选:A.本题考查属于与包含于符号的区别,属于基础题.2.已知幂函数f(x)=x a(a是常数),则( )A. 的定义域为RB. 在上单调递增C. 的图象一定经过点D. 的图象有可能经过点【试题参考答案】C【试题分析】幂函数f(x)=x a的定义域和单调性都与幂指数a有关,过定点(1,1),易选得A.【试题解答】解:(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.本题考查了幂函数的图像与性质,属于基础题.3.已知函数g(x)=,函数f(x)=|x|•g(x),则f(-2)=( )A. 1B.C. 2D.【试题参考答案】D【试题分析】直接代入x=-2,求出f(-2)的值.【试题解答】解:因为函数g(x)=,函数f(x)=|x|•g(x),所以f(-2)=|-2|•g(-2)=2×(-1)=-2.故选:D.本题考查了分段函数的取值,属于基础题.4.函数f(x)=-lnx的定义域为( )A. B.C. 或D.【试题参考答案】B【试题分析】结合根式和对数的有意义得出关系式,解出x范围即为定义域.【试题解答】解:因为f(x)有意义,则;解得x≥1;∴f(x)的定义域为:{x|x≥1}.故选:B.本题考查了根式和对数函数的定义域,属于基础题.5.若函数y=f(x)的定义域为{x|-3≤x≤8,x≠5,值域为{y|-1≤y≤2,y≠0},则y=f(x)的图象可能是( )A. B.C. D.【试题参考答案】B由图象知,选项中定义域不是,排除,选项中,出现一个对应三个,所以不是函数,故排除,故选B.6.设a=2,b=,c=()0.3,则( )A. B. C. D.【试题参考答案】A【试题分析】由指数和对数函数的性质判断a、c、b的范围,然后比较大小即可.【试题解答】解:a=2<=0,b=>=1,0<c=()0.3<()0=1,所以a<c<b.故选:A.本题考查了指数和对数函数的性质,属于基础题.7.若f(x)=4x2-kx-8在[5,8]上为单调递减函数,则k的取值范围是( )A. B.C. D.【试题参考答案】B【试题分析】结合二次函数的开口和对称轴很容易判断函数单调性,再由函数在[5,8]上为单调递减得出不等关系解出答案.【试题解答】解:二次函数f(x)=4x2-kx-8开口向上,对称轴x=,因为函数f(x)=在[5,8]上为单调递减函数所以对称轴x=,解得k≥64.故选:B.本题考查了二次函数的图像与性质,属于基础题.8. 某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y="[x](" [x]表示不大于x的最大整数)可以表示为【】A. B. C. D.【试题参考答案】B试题分析:根据规定每人推选一名代表,当各班人数除以的余数大于时增加一名代表,即余数分别为时可以增选一名代表,也就是要进一位,所以最小应该加,因此利用取整函数可表示为,也可以用特殊取值法,若,排除C,D,若,排除A,故选B.考点:函数的解析式及常用方法.【方法点晴】本题主要考查了函数的解析式问题,其中解答中涉及到取整函数的概念,函数解析式的求解等知识点的考查,着重考查了学生分析问题和解答问题的能力,此类问题的解答中主要是读懂题意,在根据数学知识即可得到答案,对于选择题要选择最恰当的方法,试题有一定的难度,属于中档试题.9.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),f(1)=2,则f(-1)+f(3)=( )A. 4B. 0C.D.【试题参考答案】D【试题分析】先由奇函数求出f(-1)=-f(1)=-2,再由f(1-x)=f(1+x)得到函数对称性求出f(3)=f(-1)=-f(1)=-2,然后看计算答案.【试题解答】解:根据题意,f(x)是定义域为(-∞,+∞)的奇函数,且f(1)=2,则f(-1)=-f(1)=-2,又由f(x)满足f(1-x)=f(1+x),则函数f(x)的对称轴为x=1,则f(3)=f(-1)=-f(1)=-2,则(-1)+f(3)=-4;故选:D.本题考查了函数的奇偶性和对称性,属于基础题.10.若函数f(x)=(k-1)a x-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x +k)的图象是( )A. B.C. D.【试题参考答案】A【试题分析】根据函数是一个奇函数,函数在原点处有定义,得到函数的图象一定过原点,求出k的值,根据函数是一个减函数,得出底数的范围,得到结果.【试题解答】∵函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上是奇函数,∴f(0)=0∴k=2,又∵f(x)=a x﹣a﹣x为减函数,所以1>a>0,所以g(x)=log a(x+2),定义域为,且递减,故选A.本题考查函数奇偶性和单调性,即对数函数的性质,本题解题的关键是看出题目中所出现的两个函数性质的应用.11.已知函数f(x)=,对任意的x1,x2≠±1且x1≠x2,给出下列说法:①若x1+x2=0,则f(x1)-f(x2)=0;②若x1•x2=1,则f(x1)+f(x2)=0;③若1<x2<x1,则f(x2)<f(x1)<0;④若()g(x)=f(),且0<x2<x1<1.则g(x1)+g(x2)=g(),其中说法正确的个数为( )A. 1B. 2C. 3D. 4【试题参考答案】D【试题分析】①和②直接用x1表示x2,代入计算即可;③中先对函数进行分离常数得f(x)=-1-,判断出函数在区间(1,+∞)单调递增,然后可得f(x2)<f(x1)<0正确;④中先求出g(x)=,再代入计算化简即可.【试题解答】解:函数f(x)=,①若x1+x2=0,则f(x1)-f(x2)==0,故①正确;②若x1•x2=1,则x2=,f(x1)+f(x2)=+=0,故②正确;③f(x)==-1-在x>1递增,可得若1<x2<x1,则f(x2)<f(x1)<0,故③正确;④若()g(x)=f()=,即g(x)=,且0<x2<x1<1.则g(x1)+g(x2)=+=.g( )=即有g(x1)+g(x2)=g( ),故④正确.故选:D.本题考查了函数解析式的化简运算,分式函数单调性,分式函数中分子分母次数相同时常采用分离常数法处理.12.设函数f(x)=,若对任意给定的m∈(1,+∞),都存在唯一的x0∈R满足f(f(x0))=2a2m2+am,则正实数a的取值范围为( )A. B. C. D.【试题参考答案】A【试题分析】先画出函数f(x)图像,记t=f(x0),存在唯一的x0,所以必有t>1,所以f(t)=2a2m2+am>1对任意给定的m∈(1,+∞)恒成立,因式分解得(ma+1)(2ma-1)>0,因为ma+1>0,所以2ma-1>0恒成立,代入m=1即可.【试题解答】解:作出函数f(x)的图象如图:由图象知当x>0时,f(x)=log2x的值域为R, 当-1≤x≤0,f(x)的取值范围为[0,1],当x<-1时,f(x)的取值范围是(-∞,1),即由图象知当f(x)≤1时,x的值不唯一,设t=f(x0),当x>0时,由f(x)=log2x≥1得x≥2,则方程f(f(x0))=2a2m2+am,等价为f(t)=2a2m2+am,因为2a2m2+am>0所以若存在唯一的x0∈R满足f(f(x0))=2a2m2+am,则t>1,即由f(x)=log2x>1得x>2,即当x>2时,f(f(x))与x存在一一对应的关系,则此时必有f(f(x))>1,即2a2m2+am>1,得(ma+1)(2ma-1)>0,因为ma+1>0,所以不等式等价为2ma-1>0,设h(m)=2ma-1,因为m>1,a>0,所以只要h(1)≥0即可,得2a-1≥0,得a≥,即实数a的取值范围是[,+∞).故选:A.本题考查了复合函数与分段函数,函数的恒成立与能成立,综合性较强,分段函数常借助函数图像进行处理,复合函数一般采用换元法.二、填空题(本大题共4小题,共20.0分)13.设集合A={0,1,2},B={2,3},则A∪B=______.【试题参考答案】{0,1,2,3}【试题分析】由集合A、B可直接写出A∪B.【试题解答】解:设集合A={0,1,2},B={2,3},则A∪B={0,1,2,3}故答案为:{0,1,2,3}.本题考查了集合的并集运算,属于基础题.14.函数y=1+log a(x+2)(a>0且a≠1)图象恒过定点A,则点A的坐标为______.【试题参考答案】(-1,1)【试题分析】由对数函数的性质log a1=0,所以令x+2=1,可知y=1.【试题解答】解:由对数函数的性质,令x+2=1可知y=1所以y=1+log a(x+2)(a>0且a≠1)图象恒过定点A(-1,1),故答案为:(-1,1).本题考查了对数函数的定点问题,对数函数定点需要把握住log a1=0进行解决.15.已知函数f(x)(对应的曲线连续不断)在区间[0,2]上的部分对应值如表:由此可判断:当精确度为0.1时,方程f(x)=0的一个近似解为______(精确到0.01)【试题参考答案】1.41(答案不唯一)【试题分析】先由表中观察到f(1.406)f(1.431)<0,且函数图像连续,所以在(1.406,1.431)上必有零点,再精确到0.01即可.【试题解答】解:由所给的函数值的表格可以看出,在x=1.406与x=1.431这两个数字对应的函数值的符号不同,即f(1.406)f(1.431)<0,∴函数的零点在(1.406,1.431)上,故当精确度为0.1时,方程f(x)=0的一个近似解为1.41故答案为:1.41(答案不唯一).本题考查了零点存在定理,属于基础题.16.函数f(x)为定义在(0,+∞)上的单调递增函数,且f(x)•f(f(x)+)=1,则f(-1)=______.【试题参考答案】【试题分析】先换元记f(x)=t,用反证法证出t≤1,因为f(t+)=,用t+替换x代入方程f(x)•f(f(x)+)=1得f(+)=t=f(x),所以+=x,即x2t2-xt-1=0,代入x=-1,解出t即可.【试题解答】解:设f(x)=t,若t>1,则f(t+)>1因为f(x)在(0,+∞)上的单调递增函数,所以1=tf(t+)>t,即与t>1矛盾,所以t≤1,则方程等价为tf(t+)=1,即f(t+)=,令t+替换x代入方程f(x)•f(f(x)+)=1,得f(t+)•f(f(t+)+)=1,即•f(+)=1,即f(+)=t=f(x),即+=x,整理得x2t2-xt-1=0代入x=-1,解得t=或t=>1(舍)所以f(-1)=故答案为:本题考查了复合函数和抽象函数,综合性较强,复合函数一般可用换元法处理.三、解答题(本大题共6小题,共70.0分)17.计算:(Ⅰ)-(-2)0-+(1.5)-2;(Ⅱ)+lg2-log48.【试题参考答案】(Ⅰ);(Ⅱ)【试题分析】(1)利用分数指数幂直接化简;(2)利用换底公式进行化简运算即可.【试题解答】(Ⅰ)-(-2)0-+(1.5)-2==(Ⅱ)+lg2-log48=lg5+lg2-+2=1-=.本题考查了分数指数幂的运算,对数的运算,属于基础题.18.已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+(m-2)(m+2)≤0,x∈R,m∈R}. (Ⅰ)若A∩B=[0,3],求实数m的值;(Ⅱ)若A⊆∁R B,求实数m的取值范围.【试题参考答案】(Ⅰ)m=2;(Ⅱ)m>5或m<-3【试题分析】(1)先通过解不等式求出集合A和B,因为A∩B=[0,3],列出关系式,求出m;(2)写出∁R B,因为A⊆∁R B,列出关系式,可求出m范围.【试题解答】(Ⅰ)A={x|x2-2x-3≤0,x∈R}={x|-1≤x≤3}B={x|x2-2mx+(m-2)(m+2)≤0 }={x|m-2≤x≤m+2}因为A∩B=[0,3]所以,即所以m=2(Ⅱ)因为B={x|m-2≤x≤m+2}.所以∁R B={x|x>m+2或x<m-2}要使A⊆∁R B,则3<m-2或-1>m+2,解得m>5或m<-3,即实数m的取值范围是m>5或m<-3.本题考查了集合的运算,集合间的包含关系,属于基础题.19.设函数f(x)=x k(k∈R,且为常数).(Ⅰ)当k=3时,判断函数f(x)的奇偶性,并证明;(Ⅱ)当k=1时,设函数g(x)=f(x)-,利用函数的单调性的定义证明函数y=g(x)在x∈(0,+∞)为单调递增函数.【试题参考答案】(1)见解析;(2)见解析【试题分析】(1)代入k=3时,f(x)=x3,因为f(-x)=-f(x),所以为奇函数;(2)代入k=1,得f(x)=x,g(x)=x-,设0<x2<x1,作差f(x1)-f(x2)化简后通过判断其正负来确定单调性.【试题解答】(1)∵k=3时,f(x)=x3定义域为R,∴f(-x)=(-x)3=-x3=-f(x),则f(x)为奇函数.(2)当k=1时,f(x)=x,g(x)=x-,设0<x2<x1,则f(x1)-f(x2)=x1--x2+=x1-x2+()=,因为0<x2<x1,所以x1x2>0,x1-x2>0,即f(x1)-f(x2)>0,则f(x1)>f(x2),即g(x)在(0,+∞)上是增函数.本题考查了函数奇偶性得判断,单调性的证明,属于基础题.20.著名英国数学和物理学家IssacNewton(1643年-1727年)曾提出了物质在常温环境下温度变化的冷却模型.把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,tmin后物体温度θ℃,可由公式θ=θ0+(θ1-θ0)e-kt(e为自然对数的底数)得到,这里k是一个随着物体与空气的接触状况而定的正的常数.现将一个原来温度为62℃的物体放在15℃的空气中冷却,1min以后物体的温度是52℃.(Ⅰ)求k的值(精确到0.01);(Ⅱ)该物体从原来的62℃开始冷却多少min后温度是32℃?(参考数据:ln≈-0.24,ln≈-0.55,ln≈-1.02)【试题参考答案】(Ⅰ)k=0.24;(Ⅱ)t=4.25【试题分析】(1)因为θ=θ0+(θ1-θ0)e-kt,代入θ1=62,θ0=15,t=1,θ=52,得到方程解出k即可;(2)由(1)和题中数据得32=15+47e-0.24t,解出t即可.【试题解答】解:(Ⅰ)由题意可知,θ1=62,θ0=15,t=1,θ=52,所以52=15+(62-15)e-k,化简得:k=-ln,因为ln≈-0.24,所以k=0.24;(Ⅱ)由(I)可知θ=15+47e-0.24t,所以当θ=32时,32=15+47e-0.24t,解得:t=4.25.本题考查了函数模型的应用,属于基础题.21.已知函数g(x)对一切实数x,y∈R都有g(x+y)-g(y)=x(x+2y-2)成立,且g(1)=0,h(x)=g(x+1)+bx+c(b,c∈R),f(x)=(Ⅰ)求g(0)的值和g(x)的解析式;(Ⅱ)记函数h(x)在[-1,1]上的最大值为M,最小值为m.若M-m≤4,当b>0时,求b的最大值; (Ⅲ)若关于x的方程f(|2x-1|)+-3k=0有三个不同的实数解,求实数k的取值范围. 【试题参考答案】(Ⅰ)g(x)=x2-2x+1;(Ⅱ)2;(Ⅲ)(0,+∞)【试题分析】(1)令x=1,y=0得g(1)-g(0)=-1,又g(1)=0,得g(0)=1,再令y=0可得g(x)=x2-2x +1;(2)由(1)得h(x)=g(x+1)+bx+c=x2+bx+c,分-<-1和-1≤-<0讨论函数的最值,结合M-m≤4确定b的范围;(3)令|2x-1|=t,化简得方程t2-(2+3k)t+(1+2k)=0,(t>0),结合题意和t=|2x-1|的图象知方程有两解,且0<t1<1<t2或0<t1<1,t2=1,分类结合二次函数零点的分布求解k的范围即可.【试题解答】(Ⅰ)令x=1,y=0得g(1)-g(0)=-1,因为g(1)=0,所以g(0)=1,令y=0得g(x)-g(0)=x(x-2),所以g(x)=x2-2x+1.(Ⅱ)h(x)=g(x+1)+bx+c=x2+bx+c.①当-<-1,即b>2时,M-m=h(1)-h(-1)=2b>4,与题设矛盾②当-1≤-<0时,即0<b≤2时,M-m=h(1)-h(-)=(+1)2≤4恒成立,综上可知当0<b≤2时,b的最大值为2.(Ⅲ)当x=0时,2x-1=0则x=0不是方程的根,方程f(|2x-1|)+-3k=0可化为:|2x-1|2-(2+3k)|2x-1|+(1+2k)=0,|2x-1|≠0,令|2x-1|=t,则方程化为t2-(2+3k)t+(1+2k)=0,(t>0),因为方程f(|2x-1|)+-3k-1=0有三个不同的实数解,由t=|2x-1|的图象知,t2-(2+3k)t+(1+2k)=0,(t>0),有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1.记h(t)=t2-(2+3k)t+(1+2k),则,此时k>0,或,此时k无解,综上实数k的取值范围是(0,+∞).本题考查了抽象函数解析式的求法,二次函数的最值,函数的零点,复合函数用换元法,函数零点问题可结合函数图像分析.22.对数函数g(x)=1og a x(a>0,a≠1)和指数函数f(x)=a x(a>0,a≠1)互为反函数.已知函数f(x)=3x,其反函数为y=g(x).(Ⅰ)若函数g(kx2+2x+1)的定义域为R,求实数k的取值范围;(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;(Ⅲ)定义在I上的函数F(x),如果满足:对任意x∈I,总存在常数M>0,都有-M≤F(x)≤M成立,则称函数F(x)是I上的有界函数,其中M为函数F(x)的上界.若函数h(x)=,当m≠0时,探求函数h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范围,若不存在,请说明理由.【试题参考答案】(Ⅰ)k>1;(Ⅱ)4;(Ⅲ)见解析【试题分析】(Ⅰ)因为g(x)=1og a x与f(x)=3x,互为反函数,所以a=3,得g(kx2+2x+1)= log3(kx2+2x +1)的定义域为R,所以kx2+2x+1>0恒成立,可求解k的范围;(Ⅱ)由|g(x1)|=|g(x2)|,得|log3x1|=|log3x2|,分析化简得x1x2=1,4x1+x2=4x1+,利用双勾函数求其最值;(Ⅲ)由h(x)==-1+,分m>0和m<0分别求出h(x)的取值范围,然后讨论其上下界. 【试题解答】(Ⅰ)由题意得g(x)=log3x,因为g(kx2+2x+1)=log3(kx2+2x+1)的定义域为R,所以kx2+2x+1>0恒成立,当k=0时不满足条件,当k≠0时,若不等式恒成立,则,即,解得k>1;(Ⅱ)由|g(x1)|=|g(x2)|,得|log3x1|=|log3x2|,因为0<x1<x2,所以0<x1<1<x2,且-log3x1=log3x2,所以log3x1+log3x2=log3x1x2=0,所以x1x2=1,所以则4x1+x2=4x1+,0<x1<1,因为函数y=4x+在(0,)上单调递减,在(,1)上单调递增,所以当x1=时,4x1+x2取得最小值为4.(Ⅲ)h(x)==-1+,(m≠0),(i)当m>0,1+m3x>1,则h(x)在[0,1]上单调递减,所以≤h(x)≤,①若||≥||,即m∈(0,]时,存在上界M,M∈[||,+∞),②若||<||,即m∈(,+∞)时,存在上界M,M∈[||,+∞),(ii)当m<0时,①若-<m<0时,h(x)在[0,1]上单调递增,h(x)∈[,],存在上界M,M∈[,+∞),②若m=-时,h(x)=-1+在[0,1]上单调递增,h(x)∈[2,+∞),故不存在上界.③若-1<m<-时,h(x)在[0,log3(-))上单调递增,h(x)在(log3(-),1]上单调递增,h(x)∈(-∞,]∪[,+∞)故不存在上界,④若m=-1,h(x)=-1+在(0,1]上单调递增,h(x)∈(-∞,-2],故不存在上界⑤若m<-1,h(x)在[0,1]上单调递增,h(x)∈[,],而<0,存在上界M,M∈[||,+∞);综上所述,当m<-1时,存在上界M,M∈[||,+∞),当-1≤m≤-时,不存在上界,当-<m<0时,存在上界M,M∈[,+∞),当m∈(0,]时,存在上界M,M∈[||,+∞),当m∈(,+∞)时,存在上界M,M∈[||,+∞).本题考查了反函数的概念,对数函数的定义域,恒成立问题与分类讨论,综合性较强,属于难题.。
绝密★启用前 四川省成都七中2018-2019学年高一(上)期中数学试卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 题号 一 二 三 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、单选题 1.若集合M={x|x ≤6},a=2,则下面结论中正确的是( ) 2A . B . C . D . {a }⫋M a ⫋M {a}∈M a ∉M 2.已知幂函数f (x )=x a (a 是常数),则( ) A .的定义域为R B .在上单调递增 f(x)f(x)(0,+∞)C .的图象一定经过点 D .的图象有可能经过点 f(x)(1,1)f(x)(1,―1)3.已知函数g (x )=,函数f (x )=|x|•g (x ),则f (-2)=( ) {1,x >00,x =0―1,x <0 A .1 B . C .2 D . ―1―24.函数f (x )=-lnx 的定义域为( ) x(x ―1)A . B . {x | x >0}{x|x ≥1}C .或 D . {x|x ≥1x <0}{x|0<x ≤1}5.若函数y=f (x )的定义域为{x |-3≤x ≤8,x ≠5,值域为{y |-1≤y ≤2,y ≠0},则y=f (x )的图象可能是( ) A . B .C .D . 6.设a=2,b=,c=()0.3,则( ) log 12log 121312A . B . C . D . a <c <b a <b <c b <c <a b <a <c 7.若f (x )=4x 2-kx-8在[5,8]上为单调递减函数,则k 的取值范围是( ) A . B .(―∞,10][64,+∞)C . D .(―∞,40]∪[64,+∞)[40,64]8.某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y="[x](" [x]表示不大于x 的最大整数)可以表示为 ()A .B .C .D .y =[x10]y =[x +310]y =[x +410]y =[x +510]9.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),f (1)=2,则f (-1)+f (3)=( )A .4B .0C .D .―2―410.若函数f (x )=(k-1)a x -a -x (a >0,a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x+k )的图象是( )A .B .C .D .11.已知函数f (x )=,对任意的x 1,x 2≠±1且x 1≠x 2,给出下列说法:1+x 21―x 2①若x 1+x 2=0,则f (x 1)-f (x 2)=0;②若x 1•x 2=1,则f (x 1)+f (x 2)=0;③若1<x 2<x 1,则f (x 2)<f (x 1)<0;④若()g (x )=f (),且0<x 2<x 1<1.则12x g (x 1)+g (x 2)=g (),x 1+x 21+x 1x 2其中说法正确的个数为( ) A .1 B .2 C .3 D .4 12.设函数f (x )=,若对任意给定的m ∈(1,+∞),都存在{log 2x(x >0)(x +1)2(―1≤x ≤0)x +2x +1(x <―1) 唯一的x 0∈R 满足f (f (x 0))=2a 2m 2+am ,则正实数a 的取值范围为( ) A . B . C . D .[12,+∞)(12,+∞)(2,+∞)[2,+∞)第II 卷(非选择题) 请点击修改第II 卷的文字说明 评卷人 得分 二、填空题 13.设集合A={0,1,2},B={2,3},则A ∪B=______. 14.函数y=1+log a (x+2)(a >0且a ≠1)图象恒过定点A ,则点A 的坐标为______. 15.已知函数f (x )(对应的曲线连续不断)在区间[0,2]上的部分对应值如表:x 0 0.88 1.30 1.406 1.431 1.52 1.62 1.70 1.875 2 f (x ) -2 -0.963 -0.340 -0.053 0.145 0.625 1.975 2.545 4.05 5由此可判断:当精确度为0.1时,方程f (x )=0的一个近似解为______(精确到0.01)16.函数f (x )为定义在(0,+∞)上的单调递增函数,且f (x )•f (f (x )+)=1,1x 则f (-1)=______.5评卷人 得分三、解答题 17.计算:(Ⅰ)-(-2)0-+(1.5)-2;(214)12(278)―23(Ⅱ)+lg2-log 48.log 25log 210+3log 3218.已知集合A={x|x 2-2x -3≤0,x ∈R},B={x|x 2-2mx+(m-2)(m+2)≤0,x ∈R ,m ∈R}.(Ⅰ)若A ∩B=[0,3],求实数m 的值;(Ⅱ)若A⊆∁R B ,求实数m 的取值范围.19.设函数f (x )=x k (k ∈R ,且为常数).(Ⅰ)当k=3时,判断函数f (x )的奇偶性,并证明;(Ⅱ)当k=1时,设函数g (x )=f (x )-,利用函数的单调性的定义证明函数y=g4f(x)(x )在x ∈(0,+∞)为单调递增函数.20.著名英国数学和物理学家IssacNewton (1643年-1727年)曾提出了物质在常温环气的温度是θ0℃,tmin 后物体温度θ℃,可由公式θ=θ0+(θ1-θ0)e -kt (e 为自然对数的底数)得到,这里k 是一个随着物体与空气的接触状况而定的正的常数.现将一个原来温度为62℃的物体放在15℃的空气中冷却,1min 以后物体的温度是52℃. (Ⅰ)求k 的值(精确到0.01); (Ⅱ)该物体从原来的62℃开始冷却多少min 后温度是32℃? (参考数据:ln ≈-0.24,ln ≈-0.55,ln ≈-1.02) 37472747174721.已知函数g (x )对一切实数x ,y ∈R 都有g (x+y )-g (y )=x (x+2y-2)成立,且g (1)=0,h (x )=g (x+1)+bx+c (b ,c ∈R ),f (x )= g(x)x (Ⅰ)求g (0)的值和g (x )的解析式; (Ⅱ)记函数h (x )在[-1,1上的最大值为M ,最小值为m .若M-m ≤4,当b >0时,求b 的最大值; (Ⅲ)若关于x 的方程f (|2x -1|)+-3k=0有三个不同的实数解,求实数k 的取值2k |2x ―1|范围. 22.对数函数g (x )=1og a x (a >0,a ≠1)和指数函数f (x )=a x (a >0,a ≠1)互为反函数.已知函数f (x )=3x ,其反函数为y=g (x ). (Ⅰ)若函数g (kx 2+2x+1)的定义域为R ,求实数k 的取值范围; (Ⅱ)若0<x 1<x 2且|g (x 1)|=|g (x 2)|,求4x 1+x 2的最小值; (Ⅲ)定义在I 上的函数F (x ),如果满足:对任总x ∈I ,存在常数M >0,都有-M ≤F (x )≤M 成立,则称函数F (x )是I 上的有界函数,其中M 为函数F (x )的上界.若函数h (x )=,当m ≠0时,探求函数h (x )在x ∈[0,1]上是否存在上界M ,1―mf(x)1+mf(x)若存在,求出M 的取值范围,若不存在,请说明理由.参考答案1.A【解析】【分析】∈∉{a}⊆⫋元素a与集合M是与的关系,集合与集合M是与的关系,逐个选项判断符号使用是否正确即可.【详解】2解:由集合M={x|x≤6},a=2,知:⫋在A中,{a}M,故A正确;∈在B中,a M,故B错误;在C中,{a}⊆M,故C错误;∈在D中,a M,故D错误.故选:A.【点睛】本题考查属于与包含于符号的区别,属于基础题.2.C【解析】【分析】幂函数f(x)=x a的定义域和单调性都与幂指数a有关,过定点(1,1),易选得A.【详解】解:(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.【点睛】本题考查了幂函数的图像与性质,属于基础题.3.D【解析】【分析】直接代入x=-2,求出f (-2)的值.【详解】解:因为函数g (x )=,函数f (x )=|x|•g (x ), {1,x >00,x =0―1,x <0所以f (-2)=|-2|•g (-2)=2×(-1)=-2.故选:D .【点睛】本题考查了分段函数的取值,属于基础题.4.B【解析】【分析】结合根式和对数的有意义得出关系式,解出x 范围即为定义域.【详解】解:因为f (x )有意义,则;解得x≥1;{x (x ―1)≥0x >0 ∴f (x )的定义域为:{x|x≥1}.故选:B .【点睛】本题考查了根式和对数函数的定义域,属于基础题.5.B【解析】由图象知,选项中定义域不是,排除,选项中,出现一个对A,D {x|―3≤x ≤8,x ≠5}A,D C x 应三个,所以不是函数,故排除,故选B.y C 6.A【解析】【分析】由指数和对数函数的性质判断a 、c 、b 的范围,然后比较大小即可.【详解】解:a =2<=0, log 12log 121b =>=1, log 1213log 12120<c =()0.3<()0=1,1212所以a <c <b .故选:A .【点睛】本题考查了指数和对数函数的性质,属于基础题.7.B【解析】【分析】结合二次函数的开口和对称轴很容易判断函数单调性,再由函数在[5,8]上为单调递减得出不等关系解出答案.【详解】解:二次函数f (x )=4x 2-kx -8开口向上,对称轴x=,―b 2a =――k 2×4=k 8因为函数f (x )=在[5,8]上为单调递减函数所以对称轴x=,解得k≥64.k 8≥8故选:B .【点睛】本题考查了二次函数的图像与性质,属于基础题.8.B【解析】试题分析:根据规定每人推选一名代表,当各班人数除以的余数大于时增加一名代表,10106即余数分别为时可以增选一名代表,也就是要进一位,所以最小应该加,因此利用7,8,9x 3取整函数可表示为,也可以用特殊取值法,若,排除C ,D ,若,y =[x +310]x =56,y =5x =57,y =6排除A ,故选B .考点:函数的解析式及常用方法.【方法点晴】本题主要考查了函数的解析式问题,其中解答中涉及到取整函数的概念,函数解析式的求解等知识点的考查,着重考查了学生分析问题和解答问题的能力,此类问题的解答中主要是读懂题意,在根据数学知识即可得到答案,对于选择题要选择最恰当的方法,试题有一定的难度,属于中档试题.9.D【解析】【分析】先由奇函数求出f(-1)=-f(1)=-2,再由f(1-x)=f(1+x)得到函数对称性求出f (3)=f(-1)=-f(1)=-2,然后看计算答案.【详解】解:根据题意,f(x)是定义域为(-∞,+∞)的奇函数,且f(1)=2,则f(-1)=-f(1)=-2,又由f(x)满足f(1-x)=f(1+x),则函数f(x)的对称轴为x=1,则f(3)=f(-1)=-f(1)=-2,则(-1)+f(3)=-4;故选:D.【点睛】本题考查了函数的奇偶性和对称性,属于基础题.10.A【解析】【分析】根据函数是一个奇函数,函数在原点处有定义,得到函数的图象一定过原点,求出k的值,根据函数是一个减函数,得出底数的范围,得到结果.【详解】∵函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上是奇函数,∴f(0)=0∴k=2,又∵f(x)=a x﹣a﹣x为减函数,所以1>a>0,所以g(x)=log a(x+2),{x|x>﹣2}定义域为,且递减,故选A.【点睛】本题考查函数奇偶性和单调性,即对数函数的性质,本题解题的关键是看出题目中所出现的两个函数性质的应用. 11.D 【解析】 【分析】①和②直接用x 1表示x 2,代入计算即可;③中先对函数进行分离常数得f (x )=-1-,2x 2―1判断出函数在区间(1,+∞)单调递增,然后可得f (x 2)<f (x 1)<0正确;④中先求出g (x )= ,再代入计算化简即可.log 121+x1―x 【详解】解:函数f (x )=,1+x 21―x 2①若x 1+x 2=0,则f (x 1)-f (x 2)==0,故①正确;1+x 121―x 12-1+x 221―x 22②若x 1•x 2=1,则x 2=,1x 1f (x 1)+f (x 2)=+=0,故②正确;1+x 121―x 121+x 12x 12―1③f (x )==-1-在x >1递增,可得若1<x 2<x 1, 1+x 21―x 22x 2―1则f (x 2)<f (x 1)<0,故③正确;④若()g (x )=f ()=,即g (x )= ,12x 1+x 1―x log 121+x1―x 且0<x 2<x 1<1.则g (x 1)+g (x 2)= + =log 121+x 11―x 1log 121+x 21―x 2log 121+x 1+x 2+x 1x 21―x 1―x 2+x 1x 2即有g (x 1)+g (x 2)=g ( ),故④正确. x 1+x 21+x 1x 2故选:D . 【点睛】本题考查了函数解析式的化简运算,分式函数单调性,分式函数中分子分母次数相同时常采用分离常数法处理. 12.A 【解析】 【分析】先画出函数f (x )图像,记t=f (x 0),存在唯一的x 0,所以必有t >1,所以f (t )=2a 2m 2+am >1对任意给定的m ∈(1,+∞)恒成立,因式分解得(ma+1)(2ma -1)>0,因为ma+1>0,所以2ma -1>0恒成立,代入m=1即可. 【详解】解:作出函数f (x )的图象如图:由图象知当x >0时,f (x )=log 2x 的值域为R , 当-1≤x≤0,f (x )的取值范围为[0,1], 当x <-1时,f (x )的取值范围是(-∞,1), 即由图象知当f (x )≤1时,x 的值不唯一,设t=f (x 0),当x >0时,由f (x )=log 2x≥1得x≥2,则方程f (f (x 0))=2a 2m 2+am , 等价为f (t )=2a 2m 2+am , 因为2a 2m 2+am >0所以若存在唯一的x 0∈R 满足f (f (x 0))=2a 2m 2+am , 则t >1,即由f (x )=log 2x >1得x >2,即当x >2时,f (f (x ))与x 存在一一对应的关系,则此时必有f (f (x ))>1, 即2a 2m 2+am >1,得(ma+1)(2ma -1)>0, 因为ma+1>0,所以不等式等价为2ma -1>0,设h (a )=2ma -1, 因为a >1,m >0,所以只要h (1)≥0即可,得2m -1≥0,得m≥, 12即实数m 的取值范围是[,+∞). 12故选:A .【点睛】本题考查了复合函数与分段函数,函数的恒成立与能成立,综合性较强,分段函数常借助函数图像进行处理,复合函数一般采用换元法.13.{0,1,2,3}【解析】【分析】由集合A、B可直接写出A∪B.【详解】解:设集合A={0,1,2},B={2,3},则A∪B={0,1,2,3}故答案为:{0,1,2,3}.【点睛】本题考查了集合的并集运算,属于基础题.14.(-1,1)【解析】【分析】由对数函数的性质log a1=0,所以令x+2=1,可知y=1.【详解】解:由对数函数的性质,令x+2=1可知y=1所以y=1+log a(x+2)(a>0且a≠1)图象恒过定点A(-1,1),故答案为:(-1,1).【点睛】本题考查了对数函数的定点问题,对数函数定点需要把握住log a1=0进行解决.15.1.41【解析】【分析】先由表中观察到f(1.406)f(1.431)<0,且函数图像连续,所以在(1.406,1.431)上必有零点,再精确到0.01即可.【详解】解:由所给的函数值的表格可以看出,在x=1.406与x=1.431这两个数字对应的函数值的符号不同,即f(1.406)f(1.431)<0,∴函数的零点在(1.406,1.431)上,故当精确度为0.1时,方程f (x )=0的一个近似解为1.41 故答案为:1.41. 【点睛】本题考查了零点存在定理,属于基础题. 16. −12【解析】 【分析】先换元记f (x )=t ,用反证法证出t≤1,因为f (t+)=,用t+替换x 代入方程f (x )•f (f 1x 1t 1x (x )+)=1得f (+)=t=f (x ),所以+=x ,即x 2t 2-xt -1=0,代入x=-1,解出1x 1t 1t +1x1t 1t +1x5t 即可. 【详解】解:设f (x )=t , 若t >1,则f (t+)>11x 因为f (x )在(0,+∞)上的单调递增函数, 所以1=tf (t+)>t ,即与t >1矛盾, 1x 所以t≤1,则方程等价为tf (t+)=1,即f (t+)=, 1x 1x 1t 令t+替换x 代入方程f (x )•f (f (x )+)=1, 1x 1x 得f (t+)•f (f (t+)+)=1,即•f (+)=1,1x 1x 1t +1x1t 1t 1t +1x即f (+)=t=f (x ),即+=x ,整理得x 2t 2-xt -1=01t 1t +1x1t 1t +1x代入x=-1,解得t=或t=>1(舍)5―126+258所以f (-1)= 5―12故答案为: ―12【点睛】本题考查了复合函数和抽象函数,综合性较强,复合函数一般可用换元法处理.17.(Ⅰ);(Ⅱ) 1232【解析】 【分析】(1)利用分数指数幂直接化简;(2)利用换底公式进行化简运算即可. 【详解】(Ⅰ)-(-2)0-+(1.5)-2==(214)12(278)―2332―1―49+4912(Ⅱ)+lg2-log 48=lg5+lg2-+2=1-=. log 25log 210+3log 323232+232【点睛】本题考查了分数指数幂的运算,对数的运算,属于基础题. 18.(Ⅰ)m=2;(Ⅱ)m >5或m <-3 【解析】 【分析】(1)先通过解不等式求出集合A 和B ,因为A∩B=[0,3],列出关系式,求出m ;(2)写出∁R B ,因为A ⊆∁R B ,列出关系式,可求出m 范围. 【详解】(Ⅰ)A={x|x 2-2x -3≤0,x ∈R}={x|-1≤x≤3}B={x|x 2-2mx+(m -2)(m+2)≤0 }={x|m -2≤x≤m+2} 因为A∩B=[0,3]所以,即 {m ―2=0m +2≥3 {m =2m ≥1所以m=2(Ⅱ)因为B={x|m -2≤x≤m+2}. 所以∁R B={x|x >m+2或x <m -2} 要使A ⊆∁R B ,则3<m -2或-1>m+2, 解得m >5或m <-3,即实数m 的取值范围是m >5或m <-3. 【点睛】本题考查了集合的运算,集合间的包含关系,属于基础题.19.(1)见解析;(2)见解析 【解析】 【分析】(1)代入k=3时,f (x )=x 3,因为f (-x )=-f (x ),所以为奇函数;(2)代入k=1,得f (x )=x ,g (x )=x -,设0<x 2<x 1,作差f (x 1)-f (x 2)化简后通过判断其正负来4x 确定单调性. 【详解】(1)∵k=3时,f (x )=x 3定义域为R ,∴f (-x )=(-x )3=-x 3=-f (x ),则f (x )为奇函数. (2)当k=1时,f (x )=x ,g (x )=x -, 4x 设0<x 2<x 1,则f (x 1)-f (x 2)=x 1--x 2+=x 1-x 2+()=,4x 14x 24x 2-4x 1(x 1―x 2)(x 1x 2+4)x 1x 2因为0<x 2<x 1,所以x 1x 2>0,x 1-x 2>0,即f (x 1)-f (x 2)>0,则f (x 1)>f (x 2), 即g (x )在(0,+∞)上是增函数. 【点睛】本题考查了函数奇偶性得判断,单调性的证明,属于基础题. 20.(Ⅰ)k=0.24;(Ⅱ)t=4.2 【解析】 【分析】(1)因为θ=θ0+(θ1-θ0)e -kt ,代入θ1=62,θ0=15,t=1,θ=52,得到方程解出k 即可;(2)由(1)和题中数据得32=15+47e -0.24t ,解出t 即可. 【详解】解:(Ⅰ)由题意可知,θ1=62,θ0=15,t=1,θ=52, 所以52=15+(62-15)e -k , 化简得:k=-ln , 3747因为ln ≈-0.24,3747所以k=0.24;(Ⅱ)由(I )可知θ=15+47e -0.24t , 所以当θ=32时,32=15+47e -0.24t , 解得:t=4.2. 【点睛】本题考查了函数模型的应用,属于基础题.21.(Ⅰ)g (x )=x 2-2x+1;(Ⅱ)2;(Ⅲ)(0,+∞) 【解析】 【分析】(1)令x=1,y=0得g (1)-g (0)=-1,又g (1)=0,得g (0)=1,再令y=0可得g (x )=x 2-2x+1;(2)由(1)得h (x )=g (x+1)+bx+c=x 2+bx+c ,分-<-1和-1≤-b2b2<0讨论函数的最值,结合M -m≤4确定b 的范围;(3)令|2x -1|=t ,化简得方程t 2-(2+3k )t+(1+2k )=0,(t >0),结合题意和t=|2x -1|的图象知方程有两解,且0<t 1<1<t 2或0<t 1<1,t 2=1,分类结合二次函数零点的分布求解k 的范围即可. 【详解】(Ⅰ)令x=1,y=0得g (1)-g (0)=-1, 因为g (1)=0,所以g (0)=1, 令y=0得g (x )-g (0)=x (x -2), 所以g (x )=x 2-2x+1.(Ⅱ)h (x )=g (x+1)+bx+c=x 2+bx+c .①当-<-1,即b >2时,M -m=h (1)-h (-1)=2b >4,与题设矛盾 b2②当-1≤-<0时,即0<b≤2时,M -m=h (1)-h (-)=(+1)2≤4恒成立, b2b2b2综上可知当0<b≤2时,b 的最大值为2. (Ⅲ)当x=0时,2x -1=0则x=0不是方程的根, 方程f (|2x -1|)+-3k=0可化为:2k|2x ―1||2x -1|2-(2+3k )|2x -1|+(1+2k )=0,|2x -1|≠0,令|2x -1|=t ,则方程化为t 2-(2+3k )t+(1+2k )=0,(t >0), 因为方程f (|2x -1|)+-3k -1=0有三个不同的实数解,2k |2x ―1|由t=|2x -1|的图象知,t 2-(2+3k )t+(1+2k )=0,(t >0),有两个根t 1、t 2, 且0<t 1<1<t 2或0<t 1<1,t 2=1. 记h (t )=t 2-(2+3k )t+(1+2k ), 则,此时k >0, {h(0)=2k +1>0h(1)=―k <0或,此时k 无解,{ℎ(0)=2k +1>0ℎ(1)=―k =00<3k +22<1综上实数k 的取值范围是(0,+∞).【点睛】本题考查了抽象函数解析式的求法,二次函数的最值,函数的零点,复合函数用换元法,函数零点问题可结合函数图像分析.22.(Ⅰ)k >1;(Ⅱ)4;(Ⅲ)见解析 【解析】 【分析】(Ⅰ)因为g (x )=1og a x 与f (x )=3x ,互为反函数,所以a=3,得g (kx 2+2x+1)= log 3(kx 2+2x+1)的定义域为R ,所以kx 2+2x+1>0恒成立,可求解k 的范围;(Ⅱ)由|g (x 1)|=|g (x 2)|,得|log 3x 1|=|log 3x 2|,分析化简得x 1x 2=1,4x 1+x 2=4x 1+,利用双勾函数求其最值;1x 1(Ⅲ)由h (x )==-1+,分m >0和m <0分别求出h (x )的取值范围,然1―m ⋅3x1+m ⋅3x 21+m ⋅3x 后讨论其上下界. 【详解】(Ⅰ)由题意得g (x )=log 3x ,因为g (kx 2+2x+1)=log 3(kx 2+2x+1)的定义域为R , 所以kx 2+2x+1>0恒成立,当k=0时不满足条件, 当k≠0时,若不等式恒成立, 则,即, {k >0△=4―4k <0 {k >0k >1解得k >1;(Ⅱ)由|g (x 1)|=|g (x 2)|,得|log 3x 1|=|log 3x 2|, 因为0<x 1<x 2,所以0<x 1<1<x 2,且-log 3x 1=log 3x 2, 所以log 3x 1+log 3x 2=log 3x 1x 2=0, 所以x 1x 2=1,所以则4x 1+x 2=4x 1+,0<x 1<1,1x 1因为函数y=4x+在(0,)上单调递减,在(,1)上单调递增, 1x 1212所以当x 1=时,4x 1+x 2取得最小值为4. 12(Ⅲ)h (x )==-1+,(m≠0),1―m ⋅3x1+m ⋅3x 21+m ⋅3x (i )当m >0,1+m3x >1,则h (x )在[0,1]上单调递减, 所以≤h (x )≤,1―3m 1+3m 1―m1+m ①若||≥||,即m ∈(0,]时,存在上界M ,M ∈[||,+∞), 1―m 1+m 1―3m 1+3m 331―m1+m ②若||<||,即m ∈(,+∞)时,存在上界M ,M ∈[||,+∞), 1―m 1+m 1―3m 1+3m 331―3m1+3m (ii )当m <0时,①若-<m <0时,h (x )在[0,1]上单调递增,h (x )∈[,],存在上界M ,131―m 1+m 1―3m1+3m M ∈[,+∞), 1―3m1+3m ②若m=-时,h (x )=-1+在[0,1]上单调递增,h (x )∈[2,+∞),故不存在上1321―13⋅3x界.③若-1<m <-时,h (x )在[0,log 3(-))上单调递增,h (x )在(log 3(-),1]上131m 1m 单调递增,h (x )∈(-∞,]∪[,+∞)故不存在上界,1―m1+m 1―3m1+3m ④若m=-1,h (x )=-1+在(0,1]上单调递增,h (x )∈(-∞,-2],故不存在上21―3x界⑤若m <-1,h (x )在[0,1]上单调递增,h (x )∈[,],而<0,存在上界1―m1+m 1―3m1+3m 1―3m1+3m M ,M ∈[||,+∞);1―m1+m 综上所述,当m <-1时,存在上界M ,M ∈[||,+∞), 1―m1+m 当-1≤m≤-时,不存在上界,13当-<m <0时,存在上界M ,M ∈[,+∞), 131―3m1+3m 当m ∈(0,]时,存在上界M ,M ∈[||,+∞), 331―m1+m 当m ∈(,+∞)时,存在上界M ,M ∈[||,+∞). 331―3m1+3m 【点睛】本题考查了反函数的概念,对数函数的定义域,恒成立问题与分类讨论,综合性较强,属于难题.。
四川省成都七中2018-2019学年高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.若集合M={x|x ≤6},,则下面结论中正确的是( )A. B. C. D. {}a M a M{}a M∈a M∉【答案】A 【解析】【分析】元素a 与集合M 是与的关系,集合与集合M 是与的关系,逐个选项判断符号使用是否正确∈∉{}a ⊆ 即可.【详解】解:由集合M={x|x≤6},a ,知:在A 中,{a }M ,故A 正确; 在B 中,a M ,故B 错误;∈在C 中,{a }⊆M ,故C 错误;在D 中,a M ,故D 错误.∈故选:A .【点睛】本题考查属于与包含于符号的区别,属于基础题.2.已知幂函数f (x )=x a (a 是常数),则( )A. 的定义域为RB. 在上单调递增()f x ()f x ()0,∞+C. 的图象一定经过点D. 的图象有可能经过点()f x ()1,1()f x ()1,1-【答案】C 【解析】【分析】幂函数f (x )=x a 的定义域和单调性都与幂指数a 有关,过定点(1,1),易选得A.【详解】解:(1)对于A ,幂函数f (x )=x a 的定义域与a 有关,不一定为R ,A 错误; (2)对于B ,a >0时,幂函数f (x )=x a 在(0,+∞)上单调递增,a <0时,幂函数f (x )=x a 在(0,+∞)上单调递减,B 错误;(3)对于C ,幂函数f (x )=x a 的图象过定点(1,1),C 正确; (4)对于D ,幂函数f (x )=x a 的图象一定不过第四象限,D 错误. 故选:C .【点睛】本题考查了幂函数的图像与性质,属于基础题.3.已知函数g (x )=,函数f (x )=|x|•g (x ),则f (-2)=( )1x 00x 01x 0⎧⎪=⎨⎪-⎩,>,,<A. 1 B. C. 2D. 1-2-【答案】D 【解析】【分析】直接代入x=-2,求出f (-2)的值.【详解】解:因为函数g (x )=,函数f (x )=|x|•g (x ),100010x x x ,>,,<⎧⎪=⎨⎪-⎩所以f (-2)=|-2|•g (-2)=2×(-1)=-2.故选:D .【点睛】本题考查了分段函数的取值,属于基础题.4.函数f (x )-lnx 的定义域为( )A. B. {}0x x >{x |x 1}≥C. 或 D. {x |x 1≥x 0}<{x |0x 1}<≤【答案】B 【解析】【分析】结合根式和对数的有意义得出关系式,解出x 范围即为定义域.【详解】解:因为f (x )有意义,则;解得x≥1;()100x x x ⎧-≥⎨>⎩∴f (x )的定义域为:{x|x≥1}.故选:B .5.若函数y=f (x )的定义域为{x |-3≤x ≤8,x ≠5,值域为{y |-1≤y ≤2,y ≠0},则y=f (x )的图象可能是( )A. B.C.D.【答案】B 【解析】由图象知,选项中定义域不是,排除,选项中,出现一个对应三个,,A D {|38,5}x x x -≤≤≠,A D C x y 所以不是函数,故排除,故选B.C 6.设a=2,b=,c=()0.3,则( )12log 121log 312A. B. C. D. a c b <<a b c<<b c a<<b a c<<【答案】A 【解析】【分析】由指数和对数函数的性质判断a 、c 、b 的范围,然后比较大小即可.【详解】解:a =2<=0,12log 12log 1b =>=1,121log 3121log 20<c =()0.3<()0=1,1212所以a <c <b .故选:A .7.若f (x )=4x 2-kx-8在[5,8]上为单调递减函数,则k 的取值范围是( )A. B. (],10∞-[)64,∞+C. D. ][(),4064,∞∞-⋃+[]40,64【答案】B 【解析】【分析】结合二次函数的开口和对称轴很容易判断函数单调性,再由函数在[5,8]上为单调递减得出不等关系解出答案.【详解】解:二次函数f (x )=4x 2-kx -8开口向上,对称轴x=,2248b k k a --=-=⨯因为函数f (x )=在[5,8]上为单调递减函数所以对称轴x=,解得k≥64.88k≥故选:B .【点睛】本题考查了二次函数的图像与性质,属于基础题.8. 某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y="[x](" [x]表示不大于x 的最大整数)可以表示为 【】A. B. C. D. y 10x ⎡⎤=⎢⎥⎣⎦3y 10x +⎡⎤=⎢⎥⎣⎦4y 10x +⎡⎤=⎢⎥⎣⎦5y 10x +⎡⎤=⎢⎥⎣⎦【答案】B 【解析】试题分析:根据规定每人推选一名代表,当各班人数除以的余数大于时增加一名代表,即余数分10106别为时可以增选一名代表,也就是要进一位,所以最小应该加,因此利用取整函数可表示为7,8,9x 3,也可以用特殊取值法,若,排除C ,D ,若,排除A ,故选B .310x y +⎡⎤=⎢⎥⎣⎦56,5x y ==57,6x y ==考点:函数的解析式及常用方法.【方法点晴】本题主要考查了函数的解析式问题,其中解答中涉及到取整函数的概念,函数解析式的求解等知识点的考查,着重考查了学生分析问题和解答问题的能力,此类问题的解答中主要是读懂题意,在根据数学知识即可得到答案,对于选择题要选择最恰当的方法,试题有一定的难度,属于中档试题.【此处有视频,请去附件查看】9.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),f(1)=2,则f(-1)+f(3)=( )2-4-A. 4B. 0C.D.【答案】D【解析】【分析】先由奇函数求出f(-1)=-f(1)=-2,再由f(1-x)=f(1+x)得到函数对称性求出f(3)=f(-1)=-f(1)=-2,然后看计算答案.【详解】解:根据题意,f(x)是定义域为(-∞,+∞)的奇函数,且f(1)=2,则f(-1)=-f(1)=-2,又由f(x)满足f(1-x)=f(1+x),则函数f(x)的对称轴为x=1,则f(3)=f(-1)=-f(1)=-2,则(-1)+f(3)=-4;故选:D.【点睛】本题考查了函数的奇偶性和对称性,属于基础题.10.若函数f(x)=(k-1)a x-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)的图象是( )A. B.C. D.【答案】A 【解析】【分析】根据函数是一个奇函数,函数在原点处有定义,得到函数的图象一定过原点,求出k 的值,根据函数是一个减函数,得出底数的范围,得到结果.【详解】∵函数f (x )=(k ﹣1)a x ﹣a ﹣x (a >0,a ≠1)在R 上是奇函数,∴f (0)=0∴k =2,又∵f (x )=a x ﹣a ﹣x 为减函数,所以1>a >0,所以g (x )=log a (x +2),定义域为,且递减,{}|2x x >﹣故选A.【点睛】本题考查函数奇偶性和单调性,即对数函数的性质,本题解题的关键是看出题目中所出现的两个函数性质的应用.11.已知函数f (x )=,对任意的x 1,x 2≠±1且x 1≠x 2,给出下列说法:221x 1x+-①若x 1+x 2=0,则f (x 1)-f (x 2)=0;②若x 1•x 2=1,则f (x 1)+f (x 2)=0;③若1<x 2<x 1,则f (x 2)<f (x 1)<0;④若()g (x )=f),且0<x 2<x 1<1.则g (x 1)12+g (x 2)=g (),1212x x 1x x ++其中说法正确的个数为( )A. 1 B. 2C. 3D. 4【答案】D 【解析】【分析】①和②直接用x 1表示x 2,代入计算即可;③中先对函数进行分离常数得f (x )=-1-,判断出函数221x -在区间(1,+∞)单调递增,然后可得f (x 2)<f (x 1)<0正确;④中先求出g (x )=,再代入计12log 11xx+-算化简即可.【详解】解:函数f (x )=,2211x x +-①若x 1+x 2=0,则f (x 1)-f (x 2)==0,故①正确;221222121111x x x x ++---②若x 1•x 2=1,则x 2=,11x f (x 1)+f (x 2)=+=0,故②正确;212111x x +-212111x x +-③f (x )==-1-在x >1递增,可得若1<x 2<x 1,2211x x +-221x -则f (x 2)<f (x 1)<0,故③正确;④若()g (x )=f )=,即g (x )= ,1211x x +-12log 11x x +-且0<x 2<x 1<1.则g (x 1)+g (x 2)=+ = 12log 1111x x +-12log 2211x x +-12log 1212121211x x x x x x x x +++--+即有g (x 1)+g (x 2)=g ( ),故④正确.12121x x x x ++故选:D .【点睛】本题考查了函数解析式的化简运算,分式函数单调性,分式函数中分子分母次数相同时常采用分离常数法处理.12.设函数f (x )=,若对任意给定的m ∈(1,+∞),都存在唯一的x 0∈R 满足()()()22log x x 0(x 1)1x 0x 2x 1x 1><⎧⎪⎪+-≤≤⎨⎪+⎪-+⎩f (f (x 0))=2a 2m 2+am ,则正实数a 的取值范围为( )A. B. C. D. 1,2∞⎡⎫+⎪⎢⎣⎭1,2∞⎛⎫+⎪⎝⎭()2,∞+[)2,∞+【答案】A 【解析】【分析】先画出函数f (x )图像,记t=f (x 0),存在唯一的x 0,所以必有t >1,所以f (t )=2a 2m 2+am >1对任意给定的m ∈(1,+∞)恒成立,因式分解得(ma+1)(2ma -1)>0,因为ma+1>0,所以2ma -1>0恒成立,代入m=1即可.【详解】解:作出函数f (x )的图象如图:由图象知当x >0时,f (x )=log 2x 的值域为R ,当-1≤x≤0,f (x )的取值范围为[0,1],当x <-1时,f (x )的取值范围是(-∞,1),即由图象知当f (x )≤1时,x 的值不唯一,设t=f (x 0),当x >0时,由f (x )=log 2x≥1得x≥2,则方程f (f (x 0))=2a 2m 2+am ,等价为f (t )=2a 2m 2+am ,因为2a 2m 2+am >0所以若存在唯一的x 0∈R 满足f (f (x 0))=2a 2m 2+am ,则t >1,即由f (x )=log 2x >1得x >2,即当x >2时,f (f (x ))与x 存在一一对应的关系,则此时必有f (f (x ))>1,即2a 2m 2+am >1,得(ma+1)(2ma -1)>0,因为ma+1>0,所以不等式等价为2ma -1>0,设h (a )=2ma -1,因为a >1,m >0,所以只要h (1)≥0即可,得2m -1≥0,得m≥,12即实数m 的取值范围是[,+∞).12故选:A .【点睛】本题考查了复合函数与分段函数,函数的恒成立与能成立,综合性较强,分段函数常借助函数图像进行处理,复合函数一般采用换元法.二、填空题(本大题共4小题,共20.0分)13.设集合A={0,1,2},B={2,3},则A∪B=______.【答案】{0,1,2,3}【解析】【分析】由集合A、B可直接写出A∪B.【详解】解:设集合A={0,1,2},B={2,3},则A∪B={0,1,2,3}故答案为:{0,1,2,3}.【点睛】本题考查了集合的并集运算,属于基础题.14.函数y=1+log a(x+2)(a>0且a≠1)图象恒过定点A,则点A的坐标为______.【答案】(-1,1)【解析】【分析】由对数函数的性质log a1=0,所以令x+2=1,可知y=1.【详解】解:由对数函数的性质,令x+2=1可知y=1所以y=1+log a(x+2)(a>0且a≠1)图象恒过定点A(-1,1),故答案为:(-1,1).【点睛】本题考查了对数函数的定点问题,对数函数定点需要把握住log a1=0进行解决.15.已知函数f(x)(对应的曲线连续不断)在区间[0,2]上的部分对应值如表:x 00.88 1.30 1.406 1.431 1.52 1.62 1.70 1.8752f (x )-2-0.963-0.340-0.0530.1450.6251.9752.5454.055由此可判断:当精确度为0.1时,方程f (x )=0的一个近似解为______(精确到0.01)【答案】1.41【解析】【分析】先由表中观察到f (1.406)f (1.431)<0,且函数图像连续,所以在(1.406,1.431)上必有零点,再精确到0.01即可.【详解】解:由所给的函数值的表格可以看出,在x=1.406与x=1.431这两个数字对应的函数值的符号不同, 即f (1.406)f (1.431)<0, ∴函数的零点在(1.406,1.431)上,故当精确度为0.1时,方程f (x )=0的一个近似解为1.41 故答案为:1.41.【点睛】本题考查了零点存在定理,属于基础题.16.函数f (x )为定义在(0,+∞)上的单调递增函数,且f (x )•f (f (x )+)=1,则f )1x=______.【答案】21-【解析】【分析】先换元记f (x )=t ,用反证法证出t≤1,因为f (t+)=,用t+替换x 代入方程f (x )•f (f (x )1x 1t 1x+)=1得f (+)=t=f (x),所以+=x ,即x 2t 2-xt -1=0,代入-1,解出t 即可.1x 1t 11t x +1t 11t x+【详解】解:设f (x )=t ,若t >1,则f (t+)>11x因为f (x )在(0,+∞)上的单调递增函数,所以1=tf (t+)>t ,即与t >1矛盾,1x所以t≤1,则方程等价为tf (t+)=1,即f (t+)=,1x 1x 1t令t+替换x 代入方程f (x )•f (f (x )+)=1,1x 1x得f (t+)•f (f (t+)+)=1,即•f (+)=1,1x 1x 11t x +1t 1t 11t x+即f (+)=t=f (x ),即+=x ,整理得x 2t 2-xt -1=01t 11t x+1t 11t x +代入-1,解得t=或>1(舍)12-所以f 1)=12-故答案为:12-【点睛】本题考查了复合函数和抽象函数,综合性较强,复合函数一般可用换元法处理.三、解答题(本大题共6小题,共70.0分)17.计算:(Ⅰ)-(-2)0-+(1.5)-2;12124()23278-()(Ⅱ)+lg2-log 48.22log 5log 103log 23+【答案】(Ⅰ);(Ⅱ)1223【解析】【分析】(1)利用分数指数幂直接化简;(2)利用换底公式进行化简运算即可.【详解】(Ⅰ)-(-2)0-+(1.5)-2==12124()23278()-3441299--+12(Ⅱ)+lg2-log 48=lg5+lg2-+2=1-=.22log 5log 103log 23+32322+32【点睛】本题考查了分数指数幂的运算,对数的运算,属于基础题.18.已知集合A={x|x 2-2x -3≤0,x ∈R},B={x|x 2-2mx+(m-2)(m+2)≤0,x ∈R ,m ∈R}.(Ⅰ)若A ∩B=[0,3],求实数m 的值;(Ⅱ)若A⊆∁R B ,求实数m 的取值范围.【答案】(Ⅰ)m=2;(Ⅱ)m >5或m <-3【解析】【分析】(1)先通过解不等式求出集合A 和B ,因为A∩B=[0,3],列出关系式,求出m ;(2)写出∁R B ,因为A ⊆∁R B ,列出关系式,可求出m 范围.【详解】(Ⅰ)A={x|x 2-2x -3≤0,x ∈R}={x|-1≤x≤3}B={x|x 2-2mx+(m -2)(m+2)≤0 }={x|m -2≤x≤m+2}因为A∩B=[0,3]所以,即{m 20m 23-=+≥{m 2m 1=≥所以m=2(Ⅱ)因为B={x|m -2≤x≤m+2}.所以∁R B={x|x >m+2或x <m -2}要使A ⊆∁R B ,则3<m -2或-1>m+2,解得m >5或m <-3,即实数m 的取值范围是m >5或m <-3.【点睛】本题考查了集合的运算,集合间的包含关系,属于基础题.19.设函数f (x )=x k (k ∈R ,且为常数).(Ⅰ)当k=3时,判断函数f (x )的奇偶性,并证明;(Ⅱ)当k=1时,设函数g (x )=f (x )-,利用函数的单调性的定义证明函数y=g (x )在()4f x x ∈(0,+∞)为单调递增函数.【答案】(1)见解析;(2)见解析【解析】【分析】(1)代入k=3时,f (x )=x 3,因为f (-x )=-f (x ),所以为奇函数;(2)代入k=1,得f (x )=x ,g (x )=x -,设0<x 2<x 1,作差f (x 1)-f (x 2)化简后通过判断其正负来确定单调性.4x【详解】(1)∵k=3时,f (x )=x 3定义域为R ,∴f (-x )=(-x )3=-x 3=-f (x ),则f (x )为奇函数.(2)当k=1时,f (x )=x ,g (x )=x -,4x设0<x 2<x 1,则f (x 1)-f (x 2)=x 1--x 2+=x 1-x 2+()=,14x 24x 2144x x -()()121212x x x x 4x x -+因为0<x 2<x 1,所以x 1x 2>0,x 1-x 2>0,即f (x 1)-f (x 2)>0,则f (x 1)>f (x 2),即g (x )在(0,+∞)上是增函数.【点睛】本题考查了函数奇偶性得判断,单调性的证明,属于基础题.20.著名英国数学和物理学家IssacNewton (1643年-1727年)曾提出了物质在常温环境下温度变化的冷却模型.把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,tmin 后物体温度θ℃,可由公式θ=θ0+(θ1-θ0)e -kt (e 为自然对数的底数)得到,这里k 是一个随着物体与空气的接触状况而定的正的常数.现将一个原来温度为62℃的物体放在15℃的空气中冷却,1min 以后物体的温度是52℃.(Ⅰ)求k 的值(精确到0.01);(Ⅱ)该物体从原来的62℃开始冷却多少min 后温度是32℃?(参考数据:ln ≈-0.24,ln ≈-0.55,ln ≈-1.02)374727471747【答案】(Ⅰ)k=0.24;(Ⅱ)t=4.2【解析】【分析】(1)因为θ=θ0+(θ1-θ0)e -kt ,代入θ1=62,θ0=15,t=1,θ=52,得到方程解出k 即可;(2)由(1)和题中数据得32=15+47e -0.24t ,解出t 即可.【详解】解:(Ⅰ)由题意可知,θ1=62,θ0=15,t=1,θ=52,所以52=15+(62-15)e -k ,化简得:k=-ln ,3747因为ln ≈-0.24,3747所以k=0.24;(Ⅱ)由(I )可知θ=15+47e -0.24t ,所以当θ=32时,32=15+47e -0.24t ,解得:t=4.2.【点睛】本题考查了函数模型的应用,属于基础题.21.已知函数g (x )对一切实数x ,y ∈R 都有g (x+y )-g (y )=x (x+2y-2)成立,且g (1)=0,h (x )=g (x+1)+bx+c (b ,c ∈R ),f (x )=()g x x(Ⅰ)求g (0)的值和g (x )的解析式;(Ⅱ)记函数h (x )在[-1,1上的最大值为M ,最小值为m .若M-m ≤4,当b >0时,求b 的最大值;(Ⅲ)若关于x 的方程f (|2x -1|)+-3k=0有三个不同的实数解,求实数k 的取值范围.x 2k 21-【答案】(Ⅰ)g (x )=x 2-2x+1;(Ⅱ)2;(Ⅲ)(0,+∞)【解析】【分析】(1)令x=1,y=0得g (1)-g (0)=-1,又g (1)=0,得g (0)=1,再令y=0可得g (x )=x 2-2x+1;(2)由(1)得h (x )=g (x+1)+bx+c=x 2+bx+c ,分-<-1和-1≤-<0讨论函数的b 2b 2最值,结合M -m≤4确定b 的范围;(3)令|2x -1|=t ,化简得方程t 2-(2+3k )t+(1+2k )=0,(t >0),结合题意和t=|2x -1|的图象知方程有两解,且0<t 1<1<t 2或0<t 1<1,t 2=1,分类结合二次函数零点的分布求解k 的范围即可.【详解】(Ⅰ)令x=1,y=0得g (1)-g (0)=-1,因为g (1)=0,所以g (0)=1,令y=0得g (x )-g (0)=x (x -2),所以g (x )=x 2-2x+1.(Ⅱ)h (x )=g (x+1)+bx+c=x 2+bx+c .①当-<-1,即b >2时,M -m=h (1)-h (-1)=2b >4,与题设矛盾b 2②当-1≤-<0时,即0<b≤2时,M -m=h (1)-h (-)=(+1)2≤4恒成立,b 2b 2b 2综上可知当0<b≤2时,b 的最大值为2.(Ⅲ)当x=0时,2x -1=0则x=0不是方程的根,方程f (|2x -1|)+-3k=0可化为:x 2k 21-|2x -1|2-(2+3k )|2x -1|+(1+2k )=0,|2x -1|≠0,令|2x -1|=t ,则方程化为t 2-(2+3k )t+(1+2k )=0,(t >0),因为方程f (|2x -1|)+-3k -1=0有三个不同的实数解,x 2k 21-由t=|2x -1|的图象知,t 2-(2+3k )t+(1+2k )=0,(t >0),有两个根t 1、t 2,且0<t 1<1<t 2或0<t 1<1,t 2=1.记h (t )=t 2-(2+3k )t+(1+2k ),则,此时k >0,()()h 02k 10h 1k 0=+>⎧⎪=-<⎨⎪⎩或,此时k 无解,()()0210103k 2012h k h k ⎧⎪=+⎪=-=⎨⎪+⎪⎩><<综上实数k 的取值范围是(0,+∞).【点睛】本题考查了抽象函数解析式的求法,二次函数的最值,函数的零点,复合函数用换元法,函数零点问题可结合函数图像分析.22.对数函数g (x )=1og a x (a >0,a ≠1)和指数函数f (x )=a x (a >0,a ≠1)互为反函数.已知函数f (x )=3x ,其反函数为y=g (x ).(Ⅰ)若函数g (kx 2+2x+1)的定义域为R ,求实数k 的取值范围;(Ⅱ)若0<x 1<x 2且|g (x 1)|=|g (x 2)|,求4x 1+x 2的最小值;(Ⅲ)定义在I 上的函数F (x ),如果满足:对任总x ∈I ,存在常数M >0,都有-M ≤F (x )≤M 成立,则称函数F (x )是I 上的有界函数,其中M 为函数F (x )的上界.若函数h (x )=,当m ≠0()()1mf x 1mf x -+时,探求函数h (x )在x ∈[0,1]上是否存在上界M ,若存在,求出M 的取值范围,若不存在,请说明理由.【答案】(Ⅰ)k >1;(Ⅱ)4;(Ⅲ)见解析【解析】【分析】(Ⅰ)因为g (x )=1og a x 与f (x )=3x ,互为反函数,所以a=3,得g (kx 2+2x+1)= log 3(kx 2+2x+1)的定义域为R ,所以kx 2+2x+1>0恒成立,可求解k 的范围;(Ⅱ)由|g (x 1)|=|g (x 2)|,得|log 3x 1|=|log 3x 2|,分析化简得x 1x 2=1,4x 1+x 2=4x 1+,利用双勾函数求其最值;(Ⅲ)由h (x )=11x =-1+,分m >0和m <0分别求出h (x )的取值范围,然后讨论其上下界.x x 1m 31m 3-⋅+⋅x21m 3+⋅【详解】(Ⅰ)由题意得g (x )=log 3x ,因为g (kx 2+2x+1)=log 3(kx 2+2x+1)的定义域为R ,所以kx 2+2x+1>0恒成立,当k=0时不满足条件,当k≠0时,若不等式恒成立,则,即,{k 044k 0>=-< {k 0k 1>>解得k >1;(Ⅱ)由|g (x 1)|=|g (x 2)|,得|log 3x 1|=|log 3x 2|,因为0<x 1<x 2,所以0<x 1<1<x 2,且-log 3x 1=log 3x 2,所以log 3x 1+log 3x 2=log 3x 1x 2=0,所以x 1x 2=1,所以则4x 1+x 2=4x 1+,0<x 1<1,11x 因为函数y=4x+在(0,)上单调递减,在(,1)上单调递增,1x 1212所以当x 1=时,4x 1+x 2取得最小值为4.12(Ⅲ)h (x )==-1+,(m≠0),x x 1m 31m 3-⋅+⋅x21m 3+⋅(i )当m >0,1+m3x >1,则h (x )在[0,1]上单调递减,所以≤h (x )≤,13m 13m -+1m 1m-+①若||≥||,即m ∈(0]时,存在上界M ,M ∈[||,+∞),1m 1m -+13m 13m -+1m 1m-+②若||<||,即m,+∞)时,存在上界M ,M ∈[||,+∞),1m 1m -+13m 13m -+13m 13m-+(ii )当m <0时,①若-<m <0时,h (x )在[0,1]上单调递增,h (x )∈[,],存在上界M ,M ∈[131m 1m -+13m 13m-+,+∞),13m 13m-+②若m=-时,h (x )=-1+在[0,1]上单调递增,h (x )∈[2,+∞),故不存在上界.13x 21133-⋅③若-1<m <-时,h (x )在[0,log 3(-))上单调递增,h (x )在(log 3(-),1]上单调递增,131m 1mh (x )∈(-∞,]∪[,+∞)故不存在上界,1m 1m -+13m 13m-+④若m=-1,h (x )=-1+在(0,1]上单调递增,h (x )∈(-∞,-2],故不存在上界x 213-⑤若m <-1,h (x )在[0,1]上单调递增,h (x )∈[,],而<0,存在上界1m 1m -+13m 13m -+13m 13m-+M ,M ∈[||,+∞);1m 1m-+综上所述,当m <-1时,存在上界M ,M ∈[||,+∞),1m 1m-+当-1≤m≤-时,不存在上界,13当-<m <0时,存在上界M ,M ∈[,+∞),1313m 13m-+当m ∈(0]时,存在上界M ,M ∈[||,+∞),1m 1m-+当m ,+∞)时,存在上界M ,M ∈[||,+∞).13m 13m-+【点睛】本题考查了反函数的概念,对数函数的定义域,恒成立问题与分类讨论,综合性较强,属于难题。
四川省成都市第七中学2018届高三上学期半期考试数学试题(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}2|{>=x x A ,}0)1(|{>-=x x x B ,则=B A ( )A .}1|{>x xB .}2|{>x xC .2|{>x x 或}0<xD .∅ 2.命题“2-=m ”是命题“直线0422=+-+m my x 与直线022=+-+m y mx 平行”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .即不充分也不必要条件3.设}{n a 为等差数列,公差2-=d ,n S 为其前n 项和. 若1110S S =,则=1a ( ) A .18 B .20 C .22 D .244.如图,设 B A ,两点在河的两岸,一测量者在A 的同侧河岸选定一点 C ,测出AC 的距离为 50米,045=∠ACB ,0105=∠CAB ,则 B A ,两点的距离为( )A .250米B .50米C .25米D .2225米 5.若等比数列}{n a 的前5项的乘积为1,86=a ,则数列}{n a 的公比为( ) A .2- B .2 C .2± D .21 6.设 312.0212,)31(,3log ===c b a ,则( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<7.曲线x x y 22+-=与x 轴围成的一个封闭图形的面积为( )A .1B .34C .3D .2 8.若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是( )A .31cm 2 B .32cm 3 C .35cm 6 D .37cm 89.把函数22ππ=sin (+)-cos (+)66y x x 的图像向左平移)0(>ϕϕ个单位就得到了一个奇函数的图象,则ϕ的最小值是( ) A .5π12 B .π6 C . π12 D .π310.函数ππ=-2sin ,[-,]22∈y x x x 的图象大致为( ) A . B .C .D .11.已知21,F F 分别是双曲线的左、右焦点,点2F 关于渐近线的对称点P 恰好落在以1F 为圆心、||1OF 为半径的圆上,则双曲线的离心率为( )A .3B .3C .2D .212.已知||()=()eR ∈x x f x x ,若关于x 的方程01)()(2=-+-m x mf x f 恰好有 4 个不相等的实数解,则实数m 的取值范围为( )A .1(,2)(2,e)e ⋃ B .1(,1)e C . 1(1,+1)e D .1(,e)e二、填空题:每题5分,满分20分13.已知抛物线)0(22>=p px y 上横坐标为 3 的点到其焦点的距离为 4,则=p .14.已知平面向量)3,12(+=m 与),2(m =是共线向量且0<⋅,则=|| . 15.刘徽(约公元 225 年—295 年)是魏晋时期伟大的数学家,中国古典数学理论的奠基人之一,他的杰作《九章算术注》和《海岛算经》是中国宝贵的古代数学遗产. 《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵. 斜解壍堵,其一为阳马,一为鳖臑.” 刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云.” 其实这里所谓的“鳖臑(biē nào )”,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥. 如图,在三棱锥BCD A -中,AB 垂直于平面BCD ,AC 垂直于CD ,且 1===CD BC AB ,则三棱锥BCD A -的外接球的球面面积为 .16.已知ω是正数,且函数 x x x f ωωcos 3sin )(-=在区间ππ(,)42上无极值,则ω的取值范围是 .三、解答题:本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知数列}{n a 满足11=a ,121+=+n n S a ,其中n S 为}{n a 的前n 项和,*N ∈n . (1)求n a ;(2)若数列}{n b 满足)log 3)(log 1(133n n n a a b ++=,}{n b 的前n 项和为n T ,且对任意的正整数n 都有m T n <,求m 的最小值.18.设ABC ∆三个内角 C B A ,,的对边分别为c b a ,,,ABC ∆的面积S 满足22234c b a S -+=.(1)求角C 的值;(2)求A B cos sin -的取值范围.19.如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,090=∠ACB ,侧棱21=AA ,点F E D ,,分别为棱AB B A CC ,,11的中点,ABD ∆的重心为G ,直线EG 垂直于平面ABD .(1)求证:直线//CF 平面BD A 1;(2)求二面角C BD A --1的余弦.20.已知椭圆C :)0(12222>>=+b a b y a x 的左、右焦点分别为 21,F F 且离心率为22,B A Q ,,为椭圆C 上三个点,21F QF ∆的周长为)12(4+,线段AB 的垂直平分线经过点)0,1(-P .(1)求椭圆C 的方程; (2)求线段AB 长度的最大值.21.已知函数-1()=ln(+1),+1R ∈x f x ax a x . (1)若)(x f 在1=x 时取到极值,求a 的值及)(x f 的图象在1=x 处的切线方程; (2)若2ln )(≥x f 在0≥x 时恒成立,求a 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 上两点N M ,的极坐标分别为π)2.圆C 的参数方程为⎩⎨⎧+-=+=θθsin 23cos 22y x (θ为参数).(1)设P 为线段MN 的中点,求直线 OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.23.选修4-5:不等式选讲已知函数()=-|-1|,R ∈f x m x m ,且0)2()2(≥-++x f x f 的解集为]4,2[-. (1)求m 的值; (2)若c b a ,,为正数,且m cb a =++31211,求证332≥++c b a .【参考答案】一、选择题1-5:DABAB 6-10:ABDCD 11-12:CC 二、填空题13.2 14.22 15.3π 16.]311,310[]35,0[ 三、解答题17.解:(1)121+=+n n S a ,121+=-n n S a ,2≥n , 两式相减得2,3,211≥==-++n a a a a a n n n n n 注意到11=a ,1123312a S a ==+=, 于是n n a a n 3,11=≥∀+,所以13-=n n a . (2))211(21)2(1+-=+=n n n n b n)]214131()1211[(21)2114121311(21++++-+++=+-++-+-=n n n n T n 43)2111211(21<+-+-+=n n T n 所以m 的最小值为43. 18.解:(1)C ab c b a abc b a C cos 2,2cos 222222=-+-+=C ab C ab c b a S sin 2134cos 234222==-+=33tan =C ,π6=C .(2)πsin -cos =-cos(+)3B A A 或者πsin(-)6A ,πsin(+)3B ,πcos(-)6B 因为5π(0,)6∈A ,所以ππ7π+(,)336∈A ,π1cos(+)(-,1]32∈A , 所以]1,21(cos sin -∈-A B . 19.解:(1) 连结 FC EF DE ,,,则在三角形AB A 1中EF 为中位线, 于是A A EF 1//,A A EF 121=因为D 为C C 1中点,所以EF 平行且等于DC . 所以在平行四边形EFCD 中,CF 平行于DE 因为DE 在平面 BD A 1上,所以CF 平行于平面BD A 1 (2)分别以1,,CC CB CA 为z y x ,,轴建立空间直角坐标系 设a CA =,则)31,3,3(),1,2,2(),2,0,(),1,0,0(),0,,0(),0,0,(1a a G a a E a A D a B a A 因为EG 垂直于平面ABD ,所以有0,0=⋅=⋅, 解得2=a ,所以22=AB面ABC 的法向量)1,0,0(=,面ABD 的法向量为)32,31,31(---=所以36,cos >=< 结合图形知,二面角C BD A --1的预先为36-. 20.解:(1))12(422+=+c a ,21=a c 2,22,2===b a c ,所以椭圆C 的方程为14822=+y x . (2)当AB 斜率不存在时,AB 最大值为4 当斜率存在时,设AB :m kx y +=联立m kx y +=与14822=+y x 得:8)(222=++m kx x ,0824)21(222=-+++m kmx x k AB 中点坐标为)21,212(22kmk km ++- 因为AB 的垂直平分线经过点)0,1(-P ,所以k k km k m 112122122-=++-+(若k 为0,则AB 中垂线为y 轴,这与题意不符)化简得:k km km k km km k m k 21,221,221122+=-+=--+=-所以22222221221)82)(12(4161||1||km k m k kx x k AB +-+-+=-+= 222221326481k k m k++--+=2222222221141222148)21(122kk k k k k k kk +-+=++++-+=42221222)21()1)(12(222112122242422222222<<+-+=++-=+-+=k k k k k k k k k k k k所以AB 最大值为4.21.解:(1)222)1)(1(2)1(21)('x ax a ax x ax a x f ++-+=+-+=, ∵)(x f 在1=x 时取到极值,∴0)1('=f ,解得1=a 故在1=x 处的切线方程为:2ln =y(2)由定义域知:01>+ax 对于0≥x 恒成立,可得0≥a22)1)(1(2)('x ax a ax x f ++-+= ①当0=a 时,在),0(+∞上,0)('<x f 恒成立,所以此时)(x f 在),0(+∞递减注意到2ln 031)2(<<-=f ,故此时2ln )(≥x f 不恒成立 ②当2≥a 时,在区间),0(+∞上,0)('>x f 恒成立,所以此时)(x f 在),0(+∞递增2ln 1)0()(>=≥f x f ,故此时2ln )(≥x f 恒成立③当20<<a 时,)(x f 的单调减区间为)2,0(a a -,单调增区间为),2(+∞-aa)(x f 在a a x -=2处取得最小值,只需2ln )2(≥-aaf 恒成立 设)20(2121)1)2(ln()()2(<<-+--++-==-a aaa aa a a g a a f设),0(2+∞∈-=a at ,tt t t a a f t m +-+++=-=11)112ln()2()(2 0)1()1(4)('222<++-=t t t t m ,)(t m 在),0(+∞递减,又2ln )1(=m 所以1≤t 即12≤-aa,解得21<≤a 综上可知,若2ln )(≥x f 恒成立,只需a 的取值范围是),1[+∞.11 22.解:(1)N M ,的平面直角坐标为)332,0(),0,2(于是P 的坐标为)33,1(所以OP 的平面直角坐标方程为:)03(33=-=y x x y(2)直线l 的方程为:023=-+y x圆C 的方程为:4)3()2(22=++-y x ,C 到l 的距离223<=d所以l 与C 相交.23.解:(1)m x x 2|3||1|≤-++,设|3||1|)(-++=x x x g ,则当1-≤x 时,22)(+-=x x g ; 当31<<-x 时,4)(=x g ;当3≥x 时,22)(-=x x g所以3,26)4()2(====-m m g g .(2)331211=++c b a 由柯西不等式,223)3132121()31211)(32(=⋅+⋅+⋅≥++++c c b b a a c b a c b a 所以332≥++c b a .。
2017-2018学年四川省成都七中高一(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)已知集合M={0,1},N={0,2,3},则N∩M=()A.{2}B.{1}C.{0}D.{0,1}2.(5.00分)函数f(x)=+lg(x+1)的定义域为()A.[﹣1,2]B.[﹣1,2)C.(﹣1,2]D.(﹣1,2)3.(5.00分)下列函数为R上的偶函数的是()A.y=x2+x B.C.D.y=|x﹣1|﹣|x+1|4.(5.00分)集合C={(x,y)|y﹣x=0},集合,则集合C,D之间的关系为()A.D∈C B.C∈D C.C⊆D D.D⊆C5.(5.00分)下列结论正确的是()A. B.lg(3+5)=lg5+lg3C.D.6.(5.00分)下列各组函数中,表示同一组函数的是()A.f(x)=x﹣2,g(x)=﹣3B.f(x)=x,g(x)=C.f(x)=,g(x)=xD.f(t)=|t﹣1|,g(x)=7.(5.00分)大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=,单位是m/s,其中O表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数为()A.100 B.300 C.3 D.18.(5.00分)设a=0.993.3,b=3.30.99,c=log3.30.99,则()A.c<b<a B.c<a<b C.a<b<c D.a<c<b9.(5.00分)函数y=a|x|+1(a>0且a≠1),x∈[﹣k,k],k>0的图象可能为()A. B.C.D.10.(5.00分)方程4x2+(m﹣2)x+m﹣5=0的一根在区间(﹣1,0)内,另一根在区间(0,2)内,则m的取值范围是()A.(,5)B.(﹣,5)C.(﹣∞,)∪(5,+∞)D.(﹣∞,)11.(5.00分)函数f(x)=﹣x2+2mx,(m>0)在x∈[0,2]的最大值为9,则m的值为()A.1或3 B.C.3 D.12.(5.00分)已知函数f(x)=,函数F(x)=f(x)﹣a 有四个不同的零点x1,x2,x3,x4且满足:x1<x2<x3<x4,则的取值范围为()A.B.[2,+∞)C.D.(2,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5.00分)已知:a+a﹣1=2则a2+a﹣2=.14.(5.00分)若幂函数y=(m2﹣m﹣1)•x m的函数图象经过原点则m=.15.(5.00分)函数f(x)=log2(3+2x﹣x2)的单调递增区间为.16.(5.00分)已知f(x)为R上的偶函数,当x>0时,f(x)=log2x.对于结论(1)当x<0时,f(x)=﹣log2(﹣x);(2)函数f[f(x)]的零点个数可以为4,5,7;(3)若f(0)=2,关于x的方程f2(x)+mf(x)﹣2=0有5个不同的实根,则m=﹣1;(4)若函数在区间[1,2]上恒为正,则实数a的范围是.说法正确的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10.00分)计算下列各式的值:(1);(2)lg5+lg22+lg2lg5+log25×log254+.18.(12.00分)已知函数(1)解不等式f(x)>3;(2)求证:函数f(x)在(﹣∞,0)上为增函数.19.(12.00分)已知集合A={x|x∈R|2x<4},B={x∈R|y=lg(x﹣4)}.(1)求集合A,B;(2)已知集合C={x|1﹣m≤x≤m﹣1},若集合C⊆(A∪B),求实数m的取值范围.20.(12.00分)《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累计计算:(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?(2)假设某人的月收入为x元,0≤x≤12500,记他应纳税为f(x)元,求f(x)的函数解析式.21.(12.00分)已知定义域为R的函数f(x)=﹣+是奇函数(1)求a的值;(2)判断函数f(x)的单调性并证明;(3)若对于任意的t∈(1,2),不等式f(﹣2t2+t+1)+f(t2﹣2mt)≤0有解,求m的取值范围.22.(12.00分)已知函数f(x)的定义域为(﹣1,1),对任意实数x,y∈(﹣1,1),都有f(x)+f(y)=f()(1)若f()=2,f()=1,且m,n∈(﹣1,1),求f(m),f(n)的值;(2)若a为常数,函数g(x)=lg(a﹣)是奇函数①验证函数g(x)满足题中的条件;②若函数h(x)=,求函数y=h[h(x)]﹣2的零点个数.2017-2018学年四川省成都七中高一(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)已知集合M={0,1},N={0,2,3},则N∩M=()A.{2}B.{1}C.{0}D.{0,1}【解答】解:∵集合M={0,1},N={0,2,3},∴N∩M={0}.故选:C.2.(5.00分)函数f(x)=+lg(x+1)的定义域为()A.[﹣1,2]B.[﹣1,2)C.(﹣1,2]D.(﹣1,2)【解答】解:∵函数f(x)=+lg(x+1),∴,解得﹣1<x≤2,∴函数f(x)的定义域为(﹣1,2].故选:C.3.(5.00分)下列函数为R上的偶函数的是()A.y=x2+x B.C.D.y=|x﹣1|﹣|x+1|【解答】解:y=f(x)=x2+x,有f(﹣x)=x2﹣x,则f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故f(x)为非奇非偶函数;f(x)=3x+的定义域为R,f(﹣x)=3﹣x+3x=f(x),故f(x)为偶函数;f(x)=x+的定义域为{x|x≠0},f(﹣x)=﹣x﹣=﹣f(x),则f(x)为奇函数;f(x)=|x﹣1|﹣|x+1|的定义域为R,且f(﹣x)=|x+1|﹣|x﹣1|=﹣f(x),则f(x)为奇函数.故选:B.4.(5.00分)集合C={(x,y)|y﹣x=0},集合,则集合C,D之间的关系为()A.D∈C B.C∈D C.C⊆D D.D⊆C【解答】解:∵集合C={(x,y)|y﹣x=0},集合={(1,1)},∴集合C,D之间的关系为D⊆C.故选:D.5.(5.00分)下列结论正确的是()A. B.lg(3+5)=lg5+lg3C.D.【解答】解:,故A不正确,lg(3+5)=lg8,故B不正确,,故C正确,,故D不正确.∴正确的是C.故选:C.6.(5.00分)下列各组函数中,表示同一组函数的是()A.f(x)=x﹣2,g(x)=﹣3B.f(x)=x,g(x)=C.f(x)=,g(x)=xD.f(t)=|t﹣1|,g(x)=【解答】解:对于A,f(x)=x﹣2(x∈R),g(x)=﹣3=x﹣2(x≠1),定义域不同,故不为同一函数;对于B,f(x)=x(x∈R),g(x)=()2=x(x≥0),定义域不同,故不为同一函数;对于C,f(x)==|x|,g(x)=x,对应法则不同,故不为同一函数;对于D,f(t)=|t﹣1|,g(x)=,定义域和对应法则完全相同,故为同一函数.故选:D.7.(5.00分)大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=,单位是m/s,其中O表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数为()A.100 B.300 C.3 D.1【解答】解:研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=,单位是m/s,其中O表示鱼的耗氧量的单位数.则:一条鲑鱼静止时,即v=0.故:,解得:O=100.故选:A.8.(5.00分)设a=0.993.3,b=3.30.99,c=log3.30.99,则()A.c<b<a B.c<a<b C.a<b<c D.a<c<b【解答】解:∵0.993.3<0.990.99,0.990.99<3.30.99,∴0<a=0.993.3<b=3.30.99,又c=log3.30.99<0,∴c<a<b.故选:B.9.(5.00分)函数y=a|x|+1(a>0且a≠1),x∈[﹣k,k],k>0的图象可能为()A. B.C.D.【解答】解:函数y=a|x|+1(a>0且a≠1),x∈[﹣k,k],k>0.函数是偶函数,排除A;函数y=a|x|+1>1,排除B;a>1时,x>0函数是增函数,C 不满足题意,D不满足题意;当a∈(0,1)时,x>0函数是减函数,C 满足题意,D不满足题意;故选:C.10.(5.00分)方程4x2+(m﹣2)x+m﹣5=0的一根在区间(﹣1,0)内,另一根在区间(0,2)内,则m的取值范围是()A.(,5)B.(﹣,5)C.(﹣∞,)∪(5,+∞)D.(﹣∞,)【解答】解:∵方程4x2+(m﹣2)x+m﹣5=0的一根在区间(﹣1,0)内,另一根在区间(0,2)内,∴函数f(x)=4x2+(m﹣2)x+m﹣5的两个零点一个在区间(﹣1,0)内,另一个在区间(0,2)内,则,解得﹣<m<5.∴m的取值范围是(﹣,5).故选:B.11.(5.00分)函数f(x)=﹣x2+2mx,(m>0)在x∈[0,2]的最大值为9,则m的值为()A.1或3 B.C.3 D.【解答】解:f(x)=﹣x2+2mx=﹣(x﹣m)2+m2,对称轴是x=m,开口向下,0<m<2时,f(x)在[0,m)递增,在(m,2]递减,故f(x)max=f(m)=m2=9,解得:m=3,不合题意,m≥2时,f(x)在[0,2]递增,故f(x)max=f(2)=4m﹣4=9,解得:m=,符合题意,故选:D.12.(5.00分)已知函数f(x)=,函数F(x)=f(x)﹣a 有四个不同的零点x1,x2,x3,x4且满足:x1<x2<x3<x4,则的取值范围为()A.B.[2,+∞)C.D.(2,+∞)【解答】解:由题意,画出函数y=|f(x)|的图象,如图所示,又函数g(x)=a﹣|f(x)|有四个零点x1,x2,x3,x4,且x1<x2<x3<x4,x3,x4,关于x=1对称;所以1<a≤2,且log2(﹣x1)=﹣log2(﹣x2)=x32﹣2x3+2=x42﹣2x4+2,x1∈[﹣4,﹣2),x2∈(﹣2,﹣],x1=,所以∈[,1),=x12,x1∈(﹣4,﹣2),则x12∈(4,16],则=+x12=+x12∈,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5.00分)已知:a+a﹣1=2则a2+a﹣2=2.【解答】解:由a+a﹣1=2,得(a+a﹣1)2=4,即a2+2+a﹣2=4,∴a2+a﹣2=2.故答案为:2.14.(5.00分)若幂函数y=(m2﹣m﹣1)•x m的函数图象经过原点则m=2.【解答】解:由题意得:m2﹣m﹣1=1,解得:m=﹣1或m=2,而函数图象过原点,则m=2,故答案为:2.15.(5.00分)函数f(x)=log2(3+2x﹣x2)的单调递增区间为(﹣1,1).【解答】解:令t=3+2x﹣x2>0,求得﹣1<x<3,故函数的定义域为(﹣1,3),且f(x)=log2t,故本题即求函数t在定义域上的增区间.再利用二次函数的性质可得函数t在定义域上的增区间为(﹣1,1),故答案为:(﹣1,1).16.(5.00分)已知f(x)为R上的偶函数,当x>0时,f(x)=log2x.对于结论(1)当x<0时,f(x)=﹣log2(﹣x);(2)函数f[f(x)]的零点个数可以为4,5,7;(3)若f(0)=2,关于x的方程f2(x)+mf(x)﹣2=0有5个不同的实根,则m=﹣1;(4)若函数在区间[1,2]上恒为正,则实数a的范围是.说法正确的序号是(3).【解答】解:f(x)为R上的偶函数,当x>0时,f(x)=log2x,当x<0时,f(﹣x)=log2(﹣x)=f(x),故(1)错;令t=f(x),则f(t)=0,可得t=1或﹣1,由f(x)=1可得x=﹣2或2;f(x)=﹣1时,可得x=±,函数f[f(x)]的零点个数为4,故(2)错;若f(0)=2,关于x的方程f2(x)+mf(x)﹣2=0有5个不同的实根,由对称性可得x=0即4+2m﹣2=0,解得m=﹣1,故(3)对;若函数在区间[1,2]上恒为正,即为log2(ax2﹣x+)>0在[1,2]恒成立,可得ax2﹣x﹣>0在[1,2]恒成立,即为a>+的最大值,由+=(+1)2﹣,可得≤≤1,可得x=1时,+取得最大值,则a>,故(4)错.故答案为:(3).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10.00分)计算下列各式的值:(1);(2)lg5+lg22+lg2lg5+log25×log254+.【解答】解:(1)==(0.2)﹣1+4﹣π+1=5+4﹣π+1=10﹣π;(2)lg5+lg22+lg2lg5+log25×log254+=lg5+lg2(lg2+lg5)+log25×log52+2=lg5+lg2+1+2=1+1+2=4.18.(12.00分)已知函数(1)解不等式f(x)>3;(2)求证:函数f(x)在(﹣∞,0)上为增函数.【解答】解:(1)由题意得:或,解得:x>1故不等式的解集是(1,+∞);(2)设x 1<x2<0,则f(x 1)﹣f(x2)=﹣+2x1+﹣2x2=(x2﹣x1)(x1+x2﹣2),∵x1<x2<0,x2﹣x1>0,x1+x2﹣2<0,故f(x1)﹣f(x2)<0,故f(x)在(﹣∞,0)递增.19.(12.00分)已知集合A={x|x∈R|2x<4},B={x∈R|y=lg(x﹣4)}.(1)求集合A,B;(2)已知集合C={x|1﹣m≤x≤m﹣1},若集合C⊆(A∪B),求实数m的取值范围.【解答】解:(1)由2x<4=22,得到x<2,即A={x|x<2},由y=lg(x﹣4)得到x﹣4>0,即x>4,B={x|x>4};(2)∵A={x|x<2},B={x|x>4},∴A∪B={x|x<2或x>4},∵C={x|1﹣m≤x≤m﹣1},若集合C⊆(A∪B),∴当C≠∅时,1﹣m≤m﹣1,即m≥1,此时m﹣1<2或1﹣m>4,解得:1≤m<3,当C=∅时,即1﹣m>m﹣1,解得:m<1,则m的范围是m<3.20.(12.00分)《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累计计算:(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?(2)假设某人的月收入为x元,0≤x≤12500,记他应纳税为f(x)元,求f(x)的函数解析式.【解答】解:(1)当他当月的工资、薪金所得为5000元时,应交税(5000﹣3500)×3%=45(元),当他当月的工资、薪金所得为5000到8000元时,应交税最多为45+3000×10%=345(元),现某人一月份应缴纳此项税款为350元,则他当月的工资、薪金所得为8000到12500元,由350﹣345=5,8000+5÷20%=8025(元),故他当月的工资、薪金所得是8025元;(2)当0<x≤3500时,y=0;当3500<x≤5000时,y=(x﹣3500)×3%=0.03x﹣105;当5000<x≤8000时,y=1500×3%+(x﹣5000)×10%=0.1x﹣455;当8000<x≤10000时,y=1500×3%+3000×10%+(x﹣8000)×20%=0.2x﹣1255.综上可得,y=21.(12.00分)已知定义域为R的函数f(x)=﹣+是奇函数(1)求a的值;(2)判断函数f(x)的单调性并证明;(3)若对于任意的t∈(1,2),不等式f(﹣2t2+t+1)+f(t2﹣2mt)≤0有解,求m的取值范围.【解答】解:(1)∵f(x)是R上的奇函数,∴f(0)=﹣+=0,∴a=1.(2)f(x)=﹣+,故f(x)是R上的减函数.证明:设x 1,x2是R上的任意两个数,且x1<x2,则f(x1)﹣f(x2)=﹣=,∵x1<x2,∴0<3<3,∴>0,即f(x1)﹣f(x2)>0,∴f(x1)>f(x2),∴f(x)在R上是减函数.(3)∵f(x)是奇函数,f(﹣2t2+t+1)+f(t2﹣2mt)≤0有解,∴f(t2﹣2mt)≤﹣f(﹣2t2+t+1)=f(2t2﹣t﹣1),又f(x)是减函数,∴t2﹣2mt≥2t2﹣t﹣1在(1,2)上有解,∴m≤=﹣++.设g(t)=﹣++,则g′(t)=﹣﹣<0,∴g(t)在(1,2)上单调递减,∴g(t)<g(1)=.∴m的取值范围是(﹣∞,].22.(12.00分)已知函数f(x)的定义域为(﹣1,1),对任意实数x,y∈(﹣1,1),都有f(x)+f(y)=f()(1)若f()=2,f()=1,且m,n∈(﹣1,1),求f(m),f(n)的值;(2)若a为常数,函数g(x)=lg(a﹣)是奇函数①验证函数g(x)满足题中的条件;②若函数h(x)=,求函数y=h[h(x)]﹣2的零点个数.【解答】解:(1)令x=y=0,得f(0)=0,再令y=﹣x,得f(x)+f(﹣x)=0,则f(﹣x)=﹣f(x),∴函数f(x)在(﹣1,1)上为奇函数,∴f()=f(m)+f(﹣n)=f(m)﹣f(n)=1,f()=f(m)+f(n)=2,解得f(m)=,f(n)=,(2)∵a为常数,函数g(x)=lg(a﹣)是奇函数,得g(0)=lga=0=lg1,∴a=1,此时g(x)=lg(1﹣)=lg,满足函数g(x)为奇函数,且g(0)=0有意义,①由>0,解得﹣1<x<1,则对任意实数x,y∈(﹣1,1),有g(x)+g(y)=lg+lg=lg(•)=lg,g()=lg=lg,∴g(x)+g(y)=g(),②由y=h[h(x)]﹣2,得h[h(x)]=2,令t=h(x),则h(t)=2,作出图象,当k≤0时,只有一个﹣1<t<0,对应3个零点,当0<k≤1时,1<k+1≤2,此时t1<﹣1,﹣1<t2<0,t3=≥1,由k+1﹣==(k+)(k﹣),得在<k≤1,k+1>,三个t分别对应一个零点,共3个,在0<k≤时,k+1≤,三个t分别对应1个,1个,3个零点,共5个,综上所述:当k>1时,y=h[h(x)]﹣2只有1个零点,当k≤0或<k≤1时,y=h[h(x)]﹣2有3个零点,当0<k≤时,y=h[h(x)]﹣2有5个零点.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。