江苏省年普通高考对口单招文化统考数学试卷
- 格式:doc
- 大小:99.00 KB
- 文档页数:10
2020年江苏省对口单招数学试卷一、单项选择题1.已知集合M={1,4},N={1,2,3},则M∪N等于A。
{1} B。
{2,3} C。
{2,3,4} D。
{1,2,3,4}解析:M∪N表示M和N的并集,即M和N中所有元素组成的集合,所以M∪N={1,2,3,4},选D。
2.若复数z满足z(2−i)=1+3i,则z的模等于A。
√2 B。
√3 C。
2 D。
3解析:将z(2-i)=1+3i展开得到2z-iz=1+3i,化简得到z=(1+3i)/(2-i)。
将分子分母都乘以2+i得到z=(1+3i)(2+i)/(5)=(-1+7i)/5,所以|z|=√((-1/5)^2+(7/5)^2)=√2,选A。
3.若数组a=(2,-3,1)和b=(1,x,4)满足条件a·b=0,则x的值是A。
-1 B。
0 C。
1 D。
2解析:XXX表示a和b的点积,即a1b1+a2b2+a3b3.将a 和b代入得到2×1+(-3)×x+1×4=0,解得x=1,选C。
4.在逻辑运算中,“A+B=”是“A·B=”的A。
充分不必要条件 B。
必要不充分条件 C。
充分必要条件 D。
既不充分也不必要条件解析:A+B=表示A或B成立,XXX表示A和B同时成立。
A+B=是A·B=的必要不充分条件,选B。
5.从5名男医生,4名女医生中任选5人组成一个医疗小分队,要求其中男医生、女医生均不少于2人,则有所不同的组队方案数是A。
80 B。
100 C。
240 D。
300解析:分别从男医生和女医生中选出2人,然后从剩下的7人中选出1人,共有C(5,2)×C(4,2)×C(7,1)=6×6×7=252种方案,但是有男女对调的重复情况,即2个男医生和3个女医生的情况和2个女医生和3个男医生的情况是重复的,所以实际方案数为252/2=126,选D。
6.过抛物线(y-1)^2=4(x+2)的顶点,且与直线x-2y+3=0垂直的直线方程是A。
江苏省2019年普通高校对口单招文化统考数 学 试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩ N 等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2. 若复数z 满足z ·i =1+2i ,则z 的虚部为3. 已知数组a =(2,-1,0),b =(1,-1,6),则a ·b 等于4. 二进制数()2换算成十进制数的结果是 A.(138)10 B.(147)10 C.(150)10 D.(162)105. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为A.π4B.π22C.π5D.π3 6. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于 A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫⎝⎛+α,则α2 cos 等于 A.257- B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于B.2-C.2 9. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m +9n 的最小值是二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图13.已知9a=3,则αx y cos =的周期是 .14.已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,线段MF 的中点坐标是(2,2),则p = . 15.已知函数f (x )=⎪⎩⎪⎨⎧,2,log 2x x, 令g (x )=f (x )+x +a .若关于x 的方程g (x )=2有两个实根,则实数a 的取指范围是 .三、解答题(本大题共8小题,共90分)16.(8分)若关于x 的不等式x 2-4ax +4a >0在R 上恒成立.(1)求实数a 的取值范围;(2)解关于x 的不等式16log 2log 23a x a <-.17.(10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)+(a -1)x +b ,且f (2)=-1.令a n =f (n -3)(n ∈N *).(1)求a ,b 的值;(2)求a 1+a 5+a 9的值.18.(12分)已知曲线C :x 2+y 2+mx +ny +1=0,其中m 是从集合M ={-2,0}中任取的一个数,n是从集合N ={-1,1,4}中任取的一个数.(1)求“曲线C 表示圆”的概率;(2)若m =-2,n =4,在此曲线C 上随机取一点Q (x ,y ),求“点Q 位于第三象限”的概率.x ≤0 x >019.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sin C =2sin A .(1)求角B 的大小;(2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221 ,求该商品的日销售额f (x )的最大值与最小值.21.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式;(2)求数列{2n b }的前n 项和T n ;(3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+Λ的值.1≤t ≤41≤t ≤9022.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :)0>>(12222b a b y a x =+相交于点M (0,1),N (0,-1),且椭圆的一条准线方程为x =-2.(1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若MA MB 107=,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图。
江苏省2020年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分,在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.已知集合M={1,4},N={1,2,3},则M∪N等于A.{1}B.{2,3}C.{2,3,4}D.{1,2,3,4}2.若复数z满足z(2−i)=1+3i,则z的模等于A.√2B.√3C.2D.33.若数组a=(2,-3,1)和b=(1,x,4)满足条件0·ba,则x的值是A.-1B.0C.1D.24.在逻辑运算中,“A+B=0”是“A·B=0”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.从5名男医生,4名女医生中任选5人组成一个医疗小分队,要求其中男医生、女医生均不少于2人,则有所不同的组队方案种树是A.80B.100C.240D.3006.过抛物线(y−1)2=4(x+2)的顶点,且与直线x−2y+3=0垂直的直线方程是A.2x+y-3=0B.2x+y+3=0C.x-2y+4=0D.x-2y-4=07.在正方体ABCD−A1B1C1D1中(题7图),异面直线A1B与B1C之间的夹角是A.30°B.45°C.60°D.90°8.题8图是某项工程的网络图(单位:天),则该工程的关键路径是A.A→B→D→E→JB.A→B→D→E→K→MC.A→B→D→F→H→JD.A→B→D→G→I→J9.若函数f(x)=sinωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于A.23B.2 C.32D.310.已知函数f(x)={2,x∈[0,1]x,x∉[0,1],则使f(f(x))=2成立的实数x的集合为A.{x|0≤x≤1或x=2}B. {x|0≤x≤1或x=3}C. {x|1≤x≤2}D. {x|0≤x≤2}二、填空题(本大题共5小题,每小题4分,共20分)11.题11图是一个程序框图,执行该程序框图,则输出的T值是▲ .12.与曲线{x=6+3√2cosθ,y=6+3√2sinθ,(θ为参数)和直线x+y−2=0都相切,且半径最小的圆的的标准方程是▲ .13.已知{a n}是等比数列,a2=2,a5=14,则a8=▲ .14.已知αϵ(π,2π),tanα=−34,则cos(2π−α)=▲ .15.已知函数f(x)={2x−1,x≤24+log a x,x>2(a>0且a≠1)的最大值为3,则实数a的取值范围是▲ .三.解答题(本大题共8小题,共90分)16.(8分)若函数f(x)=x2+(a2−5a+3)x+4在(−∞,32]上单调递减.(1)求实数a的取值范围;(2)解关于x的不等式log a(12)3x≥log a8.17.(10分)已知f(x)是定义在R上的奇函数,且对任意实数x恒有f(x+2)=−f(x),当x∈[0,2]时,f(x)=x2−2x.(1)求证:函数f(x)的周期是4;(2)求f(2017)+f(2018)+f(2019)+f(2020)的值;(3)当x ∈[2,4]时,求f(x)的解析式.18.(12分)袋中装有5张分别写着1,2,3,4,5的卡片.(1)若从中随机抽取一张卡片,然后放回后再随机抽取一张卡片,求事件A={两次抽取的卡片上的数相同}的概率;(2)若从中随机抽取一张卡片,不放回再随机抽取一张卡片.①求事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数}的概率;②若第一次抽取的卡片上的数记为a ,第二次抽取的卡片上的数记为b ,求事件C={点(a,b )在圆x 2+y 2=16内}的概率.19.(12分)已知函数f (x )=2cos x 2(√3cos x 2−sin x 2),又在△ABC 中,三个角A,B,C 所对的边分别为a,b,c ,且f(A)=0.(1)求角A 的大小;(2)若sin B +sin C =1,a =√3,求△ABC 的面积. 20.(10分)某地建一座桥,总长为240米 ,两端的桥墩已建好,余下工程需要建若干个桥墩以及各桥墩之间的桥面.经估算,一个桥墩的工程费用为400万元,距离为x 米的相邻两桥墩之间的桥面工程费用为(x 2+x )万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)需要新建多少个桥墩才能使y 最小,其最小值是多少?21.(14分)已知数列{a n }满足a 3=15,a n −a n+1=2a n ·a n+1(n ∈N +).(1)求a 1,并证明数列{1a n }为等差数列; (2)设b n =√1a n +√1a n+1,计算b 1+b 2+⋯+b 12的值; (3)设C n =(12)1a n ,数列{c n }前n 项和为S n ,证明S n <23.22.(10分)某运输公司在疫情期间接到运送物资的任务,该公司现有9辆载重为8吨的甲型卡车和6辆载重为10吨的乙型卡车,共有12名驾驶员,要求该公司每天至少运送640吨物资.已知每辆甲型卡车每天往返的次数为12次,每辆乙型卡车每天往返的次数为8次.若每辆卡车每天所需成本为甲型卡车240元,乙型卡车360元.问每天派出甲型卡车和乙型卡车各多少辆时,运输公司所花成本最少?并求最小成本.23.(14分)已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的焦距为2√3,短袖长为2.(1)求椭圆E 的方程;(2)设A 为椭圆的左顶点,过点A 的直线l 与椭圆交于另一点B.①若|AB |=2√63,求直线l 的斜率k ; ②若点P(0,m)在线段AB 的垂直平分线上,且PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ =2,求m 的值.。
江苏省普通2020届高考对口单招文化数学试卷一、选择题(本大题共10小题,共40.0分)1. 若集合M ={−1,1},N ={2,1,0},则M ∪N =( )A. {0,−1,1}B. {0,−1,2}C. {1,−1,2}D. {1,−1,0,2} 2. (文)已知复数z =6+8i ,则−|z|=( )A. −5B. −10C. 149 D. −169 3. 已知向量a ⃗ =(−3,2,5),b ⃗ =(1,x ,−1),且a ⃗ ⋅b ⃗ =2,则x 的值是( )A. 3B. 4C. 5D. 64. 两条直线A 1x+B1y+C1=0,A 2x+B2y+C2=0,互相垂直的充分必要条件是( )A. A 1A2B 1B 2=−1 B. A 1A2B 1B 2=1 C. A 1A2+B1B2=0D. A 1A2−B1B2=05. 现有3名男医生3名女医生组成两个组,去支援两个山区,每组至少2人,女医生不能全在同一组,且每组不能全为女医生,则不同的派遣方法有( )A. 36种B. 54种C. 24种D. 60种6. 经过抛物线y 2=4x 的焦点且垂直于直线3x −2y =0的直线l 的方程是( )A. 3x −2y −3=0B. 6x −4y −3=0C. 2x +3y −2=0D. 2x +3y −1=07. 如图,在正方体ABCD −A 1B 1C 1D 1中,则异面直线AC 1与BB 1所成角的余弦值为( )A. 0B. 13C. √63D. √338. 下列说法正确的是( ) A. 合情推理是正确的推理 B. 合情推理是归纳推理C. 归纳推理是从一般到特殊的推理D. 类比推理是从特殊到特殊的推理9. 已知函数在(0,4π3)上单调递增,在(4π3,2π)上单调递减,则ω=( )A. 12B. 1C. 32 D. 4310. 已知函数f (x )={2x +1,x ≥0,|x|,x <0,且f (x 0)=3,则实数x 0=( )A. −3B. 1C. −3或1D. −3或1或3二、填空题(本大题共5小题,共20.0分)11. 执行下边的程序框图,若输入的x 的值为1,则输出的y 的值是______ .12. 参数方程{x =−1+2cosθy =2+2sinθ(θ为参数0≤θ<2π)所表示的曲线的普通方程是______ . 13. 在{a n }为等比数列,a 1=12,a 2=24,则a 3= ______ . 14. 已知sin(α−π)=23,且α∈(−π2,0),则tanα= ______ .15. 已知函数f(x)=x 2−4x +alnx 在区间[1,4]上是单调函数,则实数a 的取值范围是______ . 三、解答题(本大题共8小题,共90.0分) 16. 已知函数f(x)=ax 2+x −a ,a ∈.(1)若函数f(x)的最大值大于178,求实数a 的取值范围; (2)解不等式f(x)>1(a ∈).17. 已知函数f(x)是定义在R 上的奇函数,且满足f(x +1)=f(−x +1).(1)求证:函数f(x)是周期为4的周期函数;(2)若f(x)=x 2−2x(0<x ≤1),求当x ∈[−5,−4]时,函数f(x)的解析式.18.有3张卡片,上面分别标有数字1,2,3.从中任意抽出一张卡片,放回后再抽出一张卡片.(Ⅰ)写出这个实验的所有基本事件;(Ⅱ)求两次抽取的卡片上数字之和等于5的概率;(Ⅲ)求两次抽取的卡片上数字相同的概率.19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin(A+B)a+b =sinA−sinBa−c,b=3.(Ⅰ)求角B;(Ⅱ)若cosA=√63,求△ABC的面积.20.某公司计划在办公大厅建一面长为a米的玻璃幕墙.先等距安装x根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为m米的玻璃造价为(50m+100m2)元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为y元(总造价=立柱造价+玻璃造价).(1)求y关于x的函数关系式;(2)当a=56时,怎样设计能使总造价最低?21.设满足a1+13a2+15a3+⋯+12n−1a n=n.(1)求数列{a n}的通项公式;(2)求数列{√a+√a}的前84项和.22.某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?23.已知椭圆x2a2+y2b2=1(a>b>0)经过点P(−√3,12),且点F(√3,0)为其右焦点.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B.已知点A 的坐标为(−a,0),点Q(0,y 0)在线段AB 的垂直平分线上,且QA ⃗⃗⃗⃗⃗ ·QB⃗⃗⃗⃗⃗⃗ =4,求y 0的值.-------- 答案与解析 --------1.答案:D解析:解:∵M={−1,1},N={2,1,0};∴M∪N={−1,1,2,0}.故选:D.进行并集的运算即可.考查列举法的定义,以及并集的运算.2.答案:B解析:本题考查复数的模的求法,考查计算能力.直接利用复数的求模公式求解即可.解:复数z=6+8i,则−|z|=−√62+82=−10.故选B.3.答案:C解析:【分析】本题主要考查空间向量数量积运算,考查计算能力,属于基础题.利用空间向量坐标运算a⃗⋅b⃗ =−3+2x−5=2,建立方程求解即可.【解答】解:因为a⃗=(−3,2,5),b⃗ =(1,x,−1),所以a⃗⋅b⃗ =−3+2x−5=2,解得x=5.故选C.4.答案:C解析:两直线垂直满足斜率之积为−1.∴(−A1B1)(−A2B2)=−1,∴A1A2+B1B2=0.5.答案:A解析:【分析】本题考查排列组合的应用,属于较易题.组队情况有2,4型和3,3型.2,4型只能是1男1女和2男2女,;3,3型只能是2男1女和1男2女,分别求出派遣方法,相加即可.【解答】解:组队情况有2,4型和3,3型.2,4型只能是1男1女和2男2女,此时有C31C31种方法;3,3型只能是2男1女和1男2女,此时有C32C31种方法.综上,共有(C31C31+C32C31)A22=36(种)方法,故选A.6.答案:C解析:解:设垂直于直线3x−2y=0的直线l的方程为2x+3y+c=0,由于直线l经过抛物线y2=4x的焦点为F(1,0),所以c=−2.故选C.设出垂线方程,求出焦点坐标,然后求解即可.本题考查抛物线的基本性质,直线方程的应用,考查计算能力.7.答案:D解析:本题考查异面直线所成角,属于基础题,解决异面直线所成角关键是平移,将空间问题化为平面问题,解三角形可得.如图,由于BB1//CC1,所以异面直线AC1与BB1所成的角即为直线AC1与CC1所成角,所以在Rt△ACC1中,∠AC1C为所求角.如图,由于BB1//CC1,所以异面直线AC1与BB1所成的角即为直线AC1与CC1所成角,所以在Rt△ACC1中,∠AC1C为所求角,∵在正方体ABCD−A1B1C1D1中,设棱长为1,则CC1=1,AC1=√3,,即异面直线AC1与BB1所成角的余弦值为√3.3故选D.8.答案:D解析:本题主要考查推理定义的理解,理解推理的概念是解题的关键,属于基础题.类比推理是从特殊到特殊的推理过程.解:根据类比推理是从特殊到特殊的推理过程,正确,故选D.9.答案:A解析:本题考查函数y=Asin(ωx+φ)的图象与性质,由题意可知函数在时,取最大值,得4π3×ω−π6=2kπ+π2,k∈Z,并且周期,从而求出ω的值即可.解:根据题意,函数在(0,4π3)上单调递增,在(4π3,2π)上单调递减,则f(x)在x=4π3处取得最大值,并且周期,则有4π3×ω−π6=2kπ+π2,k∈Z,且,变形可得ω=3k2+12,k∈Z,且ω≤34,当k=0时,ω=12,故选A.10.答案:C解析:本题考查分段函数求函数值,属于基础题.一般按照由内到外的顺序逐步求解.要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值即可.解:当x0≥0时,由f(x0)=2x0+1=3,得x0=1,符合要求;当x0<0时,由f(x0)=|x0|=3,得x0=−3(舍去x0=3).综上所述,x0=1,或x0=−3.故选C.11.答案:4。
江苏省2024年一般高校单独招生统一考试试卷数 学一、选择题(本大题共12小题,每小题4分,共48分,每小题列出的四个选项中,只有一项是符合要求的。
)1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T = ( )A. },4|{N n n x x ∈=B. },2|{N n n x x ∈=C. },|{N n n x x ∈=D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 ( )A .充要条件 B. 必要而非充分条件C .充分而非必要条件 D. 既非充分也非必要条件3、已知2tan -=α,且0sin >α,则αcos 为( ) A.55- B. 55± C. 55 D. 552 4、若函数a x y +=2及bx y -=4互为反函数,则b a ,的值分别为 ( )A .2,4- B. 2,2- C.21,8-- D. 8,21--5、若数列}{n a 的通项为)1(1+=n n a n ,则其前10项的和10S 等于 ( ) A.109 B.1011 C. 910 D. 1110 6、已知向量)1,1(=a 及)3,2(-=b ,若b a k 2-及a 垂直,则实数k 等于( )A.1-B. 1C.5D.07、已知x a x f =)(,)1,0(log )(≠>=a a x x g a ,若0)21()21(>⋅g f ,则)(x f y =及)(x g y =在同一坐标系内的图象可能是( )A B C D8、过点)4,2(-,且在两坐标轴上的截距之和为0的直线有( )A. 1条B. 2条C. 3条D. 4条9、三个数6.0log ,2,6.026.02的大小关系是 ( )A. 6.0log 26.026.02<<B. 6.02226.06.0log <<C. 26.026.026.0log <<D. 6.02226.0log 6.0<<10、假如事务A 及B 互斥,那么( )A. A 及B 是对立事务B. B A 是必定事务C. B A 是必定事务D. B A 与互不相容11、椭圆159)1(22=+-y x 的左焦点坐标为( )A.)0,3(-B.)0,0(C. )0,2(-D. )0,1(-12、已知函数)(x f 在),(+∞-∞上是偶函数,且)(x f 在)0,(-∞上是减函数,那么)43(-f 及)1(2+-a a f 的大小关系是 ( ) A. >-)43(f )1(2+-a a f B. ≥-)43(f )1(2+-a a f C. <-)43(f )1(2+-a a f D. ≤-)43(f )1(2+-a a f 二、填空题(本大题共6题,每小题4分,共24分,把答案填在题中的横线上。
2020年江苏省普通高考对口单招文化数学试卷一、单项选择题(本大题共10小题,共40.0分)1.已知集合M={1,4},N={1,2,3},则M∪N等于()A. {1}B. {2,3}C. {2,3,4}D. {1,2,3,4}2.若复数z满足z(2−i)=1+3i,则z的模等于()A. √2B. √3C. 2D. 33.若向量a⃗=(2,−3,1)和b⃗ =(1,x,4)满足条件a⃗⋅b⃗ =0,则x的值是()A. −1B. 0C. 1D. 24.在逻辑运算中,“A+B=0”是“A⋅B=0”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5.从5名男医生、4名女医生中任选5人组成一个医疗小分队,要求其中男医生、女医生均不少于2人,则所有不同的组队方案种数是()A. 80B. 100C. 240D. 3006.过抛物线(y−1)2=4(x+2)的顶点,且与直线x−2y+3=0垂直的直线方程是()A. 2x+y−3=0B. 2x+y+3=0C. x−2y+4=0D. x−2y−4=07.如图的正方体ABCD−A1B1C1D1中,异面直线A1B与B1C所成的角是()A. 30°B. 45°C. 60°D. 90°8.如图是某项工程的网络图(单位:天),则该工程的关键路径是()A. A→B→D→E→JB. A→B→D→E→K→MC. A→B→D→F→H→JD. A→B→D→G→I→J9.若函数f(x)=sinωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=()A. 23B. 32C. 2D. 310. 已知函数f(x)={2,x ∈[0,1]x,x ∉[0,1],则使f(f(x))=2成立的实数x 的集合为( ) A. {x|0≤x ≤1或x =2}B. {x|0≤x ≤1或x =3}C. {x|1≤x ≤2}D. {x|0≤x ≤2}二、填空题(本大题共5小题,共20.0分) 11. 如图是一个程序框图,执行该程序框图,则输出的T 值是______.12. 与曲线{x =6+3√2cosθy =6+3√2sinθ,(θ为参数)和直线x +y −2=0都相切,且半径最小的圆的标准方程是______. 13. 已知{a n }是等比数列,a 2=2,a 5=14,则a 8=______.14. 已知α∈(π,2π),tanα=−34,则cos(2π−α)=______.15. 已知函数f(x)={2x −1,x ≤24+log a x,x >2(a >0且a ≠1)的最大值为3,则实数a 的取值范围是______. 三、解答题(本大题共8小题,共90.0分)16. 若函数f(x)=x 2+(a 2−5a +3)x +4在(−∞,32]上单调递减.(1)求实数a 的取值范围;(2)解关于x 的不等式log a (12)3x ≥log a 8.17.已知f(x)是定义在R上的奇函数,且对任意实数x恒有f(x+2)=−f(x),当x∈[0,2]时,f(x)=x2−2x.(1)求证:函数f(x)的周期是4;(2)求f(2017)+f(2018)+f(2019)+f(2020)的值;(3)当x∈[2,4]时,求f(x)的解析式.18.袋中装有5张分别写着1,2,3,4,5的卡片.(1)若从中随机抽取一张卡片,然后放回后再随机抽取一张卡片,求事件A={两次抽取的卡片上的数相同}的概率;(2)若从中随机抽取一张卡片,不放回再随机抽取一张卡片.①求事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数}的概率;②若第一次抽取的卡片上的数记为a,第二次抽取的卡片上的数记为b,求事件C={点(a,b)在圆x2+y2=16内}的概率.19.已知函数f(x)=2cos x2(√3cos x2−sin x2),又在△ABC中,三个角A,B,C所对的边分别为a,b,c,且f(A)=0.(1)求角A的大小;(2)若sinB+sinC=1,a=√3,求△ABC的面积.20.某地建一座桥,总长为240米,两端的桥墩已建好,余下工程需要建若干个桥墩以及各桥墩之间的桥面.经估算,一个桥墩的工程费用为400万元,距离为x米的相邻两桥墩之间的桥面工程费用为(x2+x)万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)需要新建多少个桥墩才能使y最小,其最小值是多少?21.已知数列{a n}满足a3=15,a n−a n+1=2a n⋅a n+1(n∈N+).(1)求a1,并证明数列{1a n}为等差数列;(2)设b n=√1a n +√1a n+1,计算b1+b2+⋯+b12的值;(3)设cn =(12)1a n,数列{c n}前n项和为S n,证明:S n<23.22. 某运输公司在疫情期间接到运送物资的任务.该公司现有9辆载重为8吨的甲型卡车和6辆载重为10吨的乙型卡车,共有12名驾驶员,要求该公司每天至少运送640吨物资.已知每辆甲型卡车每天往返的次数为12次,每辆乙型卡车每天往返的次数为8次.若每辆卡车每天所需成本为甲型卡车240元、乙型卡车360元.问每天派出甲型卡车和乙型卡车各多少辆时,运输公司所花成本最少?并求最小成本.23. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为2√3,短轴长为2. (1)求椭圆E 的方程;(2)设A 为椭圆的左顶点,过点A 的直线l 与椭圆交于另一点B .①若|AB|=2√63,求直线l 的斜率k ;②若点P(0,m)在线段AB 的垂直平分线上,且PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =2,求m 的值.答案和解析1.【答案】D【解析】解:M={1,4},N={1,2,3},∴M∪N={1,2,3,4}.故选:D.进行并集的运算即可.本题考查了列举法的定义,并集的定义及运算,考查了计算能力,属于基础题.2.【答案】A【解析】解:由z(2−i)=1+3i,得z=1+3i2−i,则|z|=|1+3i2−i |=|1+3i||2−i|=√10√5=√2.故选:A.把已知等式变形,再由商的模等于模的商求解.本题考查复数模的求法,考查数学转化思想方法,是基础题.3.【答案】D【解析】解:因为a⃗=(2,−3,1)和b⃗ =(1,x,4)满足条件a⃗⋅b⃗ =0,即2−3x+4=0⇒x=2;故选:D.直接代入数量积求解即可.本题主要考查向量数量积的运算,属于基础题.4.【答案】A【解析】解:“A+B=0”⇒“A⋅B=0”,反之不成立.∴“A+B=0”是“A⋅B=0”的充分不必要条件.故选:A.利用逻辑运算的性质即可判断出结论.本题考查了逻辑运算的性质,考查了推理能力与计算能力,属于基础题.5.【答案】B【解析】解:根据题意,分2种情况讨论:①选出的5人中有2名男医生,3名女医生,有C52C43=40种选法;②选出的5人中有3名男医生,2名女医生,有C53C42=60种选法;则有40+60=100种组队方法;故选:B.根据题意,分2种情况讨论:①选出的5人中有2名男医生,3名女医生,②选出的5人中有3名男医生,2名女医生,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,属于基础题.6.【答案】B,【解析】解:抛物线(y−1)2=4(x+2)的顶点(−2,1),直线x−2y+3=0的斜率为:12过抛物线(y−1)2=4(x+2)的顶点,且与直线x−2y+3=0垂直的直线的斜率为−2,所以所求直线方程为:y−1=−2(x+2),即2x+y+3=0.故选:B.求出抛物线的顶点坐标,求出直线的斜率,然后求解直线方程即可.本题考查抛物线的简单性质的应用,直线方程的求法,是基本知识的考查.7.【答案】C【解析】解:连接A1D,由正方体的几何特征可得:A1D//B1C,则∠BA1D即为异面直线A1B与B1C所成的角,连接BD,易得:BD=A1D=A1B故∠BA1D=60°故选:C.连接A1D,根据正方体的几何特征及异面直线夹角的定义,我们可得∠BA1D即为异面直线A1B与B1C所成的角,连接BD 后,解三角形BA 1D 即可得到异面直线A 1B 与B 1C 所成的角.本题考查的知识点是异面直线及其所成的角,其中根据正方体的几何特征及异面直线夹角的定义判断出∠BA 1D 即为异面直线A 1B 与B 1C 所成的角,是解答本题的关键.8.【答案】D【解析】解:从节点①到节点⑤最长耗时为:9,对应关键路径为:A →B →D ;从节点⑤到节点⑧最长耗时为:9,对应关键路径为:G →I ;从节点⑧到节点⑩最长耗时为5,对应关键路径为J ;因此关键路径为:A →B →D →G →I →J .故选:D .结合所给的工程的流程图,可得答案.本题考查了工序流程图(即统筹图)的应用问题,也考查了读图、识图和问题转化、分析能力. 9.【答案】B【解析】解:由题意可知函数在x =π3时取得最大值,就是ωπ3=2kπ+π2,k ∈Z ,所以ω=6k +32;只有k =0时,ω=32满足选项.故选B由题意可知函数在x =π3时取得最大值,就是ωπ3=2kπ+π2,求出ω的值即可. 本题是基础题,考查三角函数的性质,函数解析式的求法,常考题型.10.【答案】A【解析】解:根据题意,函数f(x)={2,x ∈[0,1]x,x ∉[0,1],对于f(f(x))=2, 分2种情况讨论:若x ∈[0,1],则f(x)=2,则有f(f(x))=f(2)=2,符合题意;若x ∉[0,1],则f(x)=x ,则有f(f(x))=f(x)=x =2,解可得x =2,故x 的取值范围为{x|0≤x ≤1或x =2};故选:A .根据题意,结合函数的解析式分2种情况讨论:①若x ∈[0,1],则f(x)=2,②若x ∉[0,1],则f(x)=x ,先求出f(f(x))的解析式,进而分析f(f(x))=2的解集,综合可得答案.本题考查函数值的计算,涉及分段函数的性质以及应用,属于基础题.11.【答案】32【解析】解:根据程序框图,运行如下:S =2,T =0,n =0不满足判断框内的条件T >S ,执行循环体,S =10,n =2,T =4不满足判断框内的条件T >S ,执行循环体,S =18,n =4,T =20此时,满足判断框内的条件T >S ,退出循环,可得T =2×(20−4)=32.故答案为:32.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量T 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解决程序框图中的循环结构的问题,一般按照框图的流程写出前几次循环的结果,找规律.属于基础题.12.【答案】(x −2)2+(y −2)2=2【解析】解:由曲线{x =6+3√2cosθy =6+3√2sinθ,(θ为参数),消去参数θ, 可得圆的普通方程为(x −6)2+(y −6)2=18,则圆的圆心坐标为(6,6),半径为3√2.作出圆与直线如图:圆心(6,6)到直线x +y −2=0的距离为d =√2=5√2.∴所求的最小圆的圆心在直线y =x 上,且半径为√2.所求小圆的圆心到直线x +y −2=0的距离为√2, 可得圆心坐标为(2,2).故所求圆的标准方程为(x −2)2+(y −2)2=2. 故答案为:(x −2)2+(y −2)2=2.化参数方程为普通方程,求圆心坐标,再求圆心到直线的距离,求出最小的圆的半径,圆心坐标,可得圆的方程.本题考查圆的参数方程,考查直线和圆的方程的应用,考查转化的数学思想,是中档题.13.【答案】132【解析】 【分析】本题考查等比数列的通项公式,由等比数列的通项公式,列出方程组,求出首项和公比,由此能求出a 8. 【解答】解:∵{a n }是等比数列,a 2=2,a 5=14, ∴{a 1q =2a 1q 4=14, 解得a 1=4,q =12, ∴a 8=4×(12)7=132. 故答案为:132.14.【答案】45【解析】解:∵α∈(π,2π),tanα=−34<0, ∴α∈(3π2,2π),∴cos(2π−α)=cosα=√11+tan 2α=√11+916=45.故答案为:45.由已知可求范围α∈(3π2,2π),进而根据诱导公式,同角三角函数基本关系式即可求解.本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.【答案】[12,1)【解析】 【分析】本题考查函数的最值的求法,分段函数的应用,对数函数的性质的应用,是基本知识的考查. 利用分段函数的单调性以及函数的最值转化求解即可. 【解答】解:函数f(x)={2x −1,x ≤24+log a x,x >2(a >0且a ≠1), 当x ≤2时,f(x)=2x −1≤3,恒成立, 当x >2时,必须f(x)=4+log a x ≤3恒成立, 即:log a x ≤−1,所以y =log a x 在x >2时是减函数, 可得log a 2≤−1,则{0<a <12≥a −1,解得a ∈[12,1). 故答案为:[12,1).16.【答案】解:(1)二次函数的对称轴x =−a2−5a+32,开口向上,由题意可得,−a 2−5a+32≥32,整理可得,a 2−5a +6≤0, 解可得,2≤a ≤3, (2)由(1)可知a >1,由log a (12)3x ≥log a 8可得(12)3x ≥8, 所以3x ≤−3,解可得x ≤−1. 故不等式的解集(−∞,−1].【解析】(1)由题意结合二次函数的性质可得,−a 2−5a+32≥32,解不等式即可求解.(2)由log a (12)3x ≥log a 8结合对数函数的单调性即可转化求解.本题主要考查了二次函数的性质及对数函数的单调性在求解不等式中的应用,属于基础试题.17.【答案】解:(1)证明:因为f(x+4)=f[)x+2)+2]=−f(x+2)=f(x),故函数的周期T=4;(2)f(2017)+f(2018)+f(2019)+f(2020)=f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(−1)+f(0)=f(1)+f(2)−f(1)+f(0)=f(2)=0,(3)当x∈[2,4]时,−x∈[−4,−2],所以0≤4−x≤2,所以f(4−x)=(4−x)2−2(4−x)=x2−6x+8=f(−x)=−f(x),所以f(x)=−x2+6x−8,x∈[2,4].【解析】(1)结合已知及周期的定义即可求解;(2)结合已知周期性及已知区间上的函数解析式进行转化,代入可求;(3)先把所求区间上的变量进行转化到已知区间上,然后结合奇函数的性质可求.本题主要考查了函数的周期在求解函数值中的应用及利用周期性求解函数值,体现了转化思想的应用.18.【答案】解:(1)袋中装有5张分别写着1,2,3,4,5的卡片.从中随机抽取一张卡片,然后放回后再随机抽取一张卡片,基本事件总数n=5×5=25,事件A={两次抽取的卡片上的数相同},则事件A包含的基本事件个数m1=C51C11=5,∴事件A={两次抽取的卡片上的数相同}的概率P(A)=m1n =525=15.(2)①从中随机抽取一张卡片,不放回再随机抽取一张卡片.基本事件总数n1=5×4=20,事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数},则事件B包含的基本事件有10个,分别为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),∴事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数}的概率为:P=1020=12.②第一次抽取的卡片上的数记为a,第二次抽取的卡片上的数记为b,基本事件总数n1=5×4=20,事件C={点(a,b)在圆x2+y2=16内},∴事件C包含的基本事件有6个,分别为:(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),∴事件C={点(a,b)在圆x2+y2=16内}的概率为:P(C)=620=310.【解析】(1)基本事件总数n=5×5=25,事件A={两次抽取的卡片上的数相同},则事件A包含的基本事件个数m1=C51C11=5,由此能求出事件A={两次抽取的卡片上的数相同}的概率.(2)①从中随机抽取一张卡片,不放回再随机抽取一张卡片.基本事件总数n1=5×4=20,利用列举法求出事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数}包含的基本事件有10个,由此能求出事件B的概率.②第一次抽取的卡片上的数记为a,第二次抽取的卡片上的数记为b,基本事件总数n1=5×4=20,利用列举法求出事件C={点(a,b)在圆x2+y2=16内}包含的基本事件有6个,由此能求出事件C的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.19.【答案】解:(1)f(x)=2cos x2(√3cos x2−sin x2)=2√3cos2x2−2sin x2cos x2,=2√3⋅1+cosx2−sinx,=√3+√3cosx−sinx,=√3−2sin(x−π3),因为f(A)=√3−2sin(A−π3)=0,所以sin(A−π3)=√32,∴A−π3=π3,即A=2π3;(2)∵sinB+sinC=1,a=√3,由正弦定理可得,asinA =bsinB=csinC=b+csinB+sinC,∴√3√32=b+c=2,因为1=sinB+sin(13π−B)=12sinB+√32cosB=sin(B+π3),因为B为三角形的内角,故B=π6=C,∴b =c =1,S △ABC =12bcsinA =12×1×√3×√32=√34.【解析】(1)由已知结合和差角公式及二倍角公式对已知函数进行化简,然后结合已知f(A)=0可求A , (2)由已知结合正弦定理及和差角公式可求B ,C ,然后结合三角形的面积公式即可求解.本题主要考查了二倍角,和差角公式在三角化简中的应用,还考查了正弦定理及三角形的面积公式的应用,属于中档试题.20.【答案】解:(1)y =400(240x−1)+240x⋅(x 2+x)=240x +96000x −160(0<x <240).(2)∵240x +96000x≥2√240x ⋅96000x=9600,当且仅当240x =96000x即x =20时取等号,∴y 的最小值为9600−160=9440,此时桥墩个数为:240x−1=11,∴需要新建11个桥墩才能使y 最小,最小值是9440.【解析】(1)用x 表示出桥墩个数和桥面个数,得出y 关于x 的函数; (2)根据基本不等式求出y 最小值及其对应的x 的值,从而得出桥墩个数. 本题考查了函数解析式,函数最值计算,基本不等式的应用,属于中档题.21.【答案】解:(1)证明:∵a n −a n+1=2a n ⋅a n+1,∴a n −a n+1a n ⋅a n+1=2,即1a n+1−1a n=2,∴数列{1a n}是以1a 1为首项,以2为公差的等差数列,且1a n=1a 1+2(n −1).又∵a 3=15,∴1a 3=1a 1+2×2=5,解得a 1=1;(2)解:由(1)知:1a n=1+2(n −1)=2n −1,∴b n =√1a n +√1an+1=√2n−1+√2n+1=√2n +1−√2n −1,∴b 1+b 2+⋯+b 12=(√3−√1)+(√5−√3)+⋯+(√25−√23)=√25−√1=4; (3)证明:由(1)知:1a n=2n −1,∴c n =(12)1a n=(12)2n−1,∴数列{c n }首项为12,公比为14的等比数列,∴S n =12[1−(14)n ]1−14=23[1−(14)n ]<23.【解析】(1)由a n −a n+1=2a n ⋅a n+1⇒1a n+1−1a n=2,从而说明数列{1a n}为等差数列,再利用a 3=15求出a 1;(2)先由(1)求得1a n,再求b n ,然后利用裂项相消法求b 1+b 2+⋯+b 12的值; (3)先求得c n ,说明其是等比数列,再求前n 项和S n ,进而证明要证结论.本题主要考查等差、等比数列的通项公式、前n 项和的求法及裂项相消法在数列求和中的应用,属于中档题.22.【答案】解:设每天派出甲型卡车x 辆,乙型卡车y 辆,运输队所花成本为z 元,则{x,y ∈N0≤x ≤90≤y ≤6x +y ≤1296x +80y ≥640, 化简得:{x,y ∈N 0≤x ≤90≤y ≤6x +y ≤126x +5y ≥40,目标函数z =240x +360y ,画出满足条件的可行域如图中阴影部分所示:由图可知,当直线z =240x +360y 经过点A 时,截距z 最小, 解方程组{6x +5y =40y =0,得点A 的坐标为(203,0),又∵x ∈N ,y ∈N ,∴点A(203,0)不是最优解, ∵在可行域的整数点中,点(7,0)使z 取得最小值, 即z min =240×7+360×0=1680,∴每天派出甲型卡车7辆,乙型卡车0辆,运输队所花的成本最低, 最低成本为1680元,答:每天派出甲型卡车7辆,乙型卡车0辆,运输队所花的成本最低,最低成本为1680元.【解析】本题主要考查了简单的线性规划问题,根据题意列出不等式组是解题关键,本题属于中档题. 设每天派出甲型卡车x 辆,乙型卡车y 辆,运输队所花成本为z 元,根据题意把实际问题数学化,列出需要满足的不等式组,注意x ∈N ,y ∈N ,把运输队所花成本z 看作目标函数,画出可行域,根据目标函数平移得到最值的取法.23.【答案】解:(1)焦距为2√3,短轴长为2,可得2c =2√3,2b =2,即c =√3,b =1,a =√b 2+c 2=2,则椭圆方程为x 24+y 2=1;(2)①A(−2,0),可设直线l 的方程为y =k(x +2),联立椭圆方程x 2+4y 2=4,可得(1+4k 2)x 2+16k 2x +16k 2−4=0, 则−2x B =16k 2−41+4k2,可得x B =2−8k 21+4k 2, 可得|AB|=√1+k 2⋅|−2−2−8k 21+4k 2|=2√63, 解得k =±√22;②若点P(0,m)在线段AB 的垂直平分线上,可设AB 的垂直平分线方程为y =−1k x +m , 可得AB 的中点坐标(−8k 21+4k 2,2k 1+4k 2),代入AB 的垂直平分线方程可得m =2k 1+4k 2−8k 1+4k 2=−6k1+4k 2, 由A(−2,0),B(2−8k 21+4k 2,4k1+4k 2), 则PA⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(−2,6k1+4k 2)⋅(2−8k 21+4k 2,10k1+4k 2)=−2⋅2−8k 21+4k 2+6k1+4k 2⋅10k1+4k 2=2, 化为16k 4+22k 2−3=0, 解得k =±√24,则m =−6k1+4k 2=±√2.【解析】(1)由短轴和焦距的概念,结合a ,b ,c 的关系,解方程可得a ,b ,进而得到所求椭圆方程; (2)①设直线l 的方程为y =k(x +2),联立椭圆方程,运用韦达定理,求得B 的横坐标,由弦长公式,解方程可得k ;x+m,运用中点坐标公式可得AB的中点坐标,进而得到m关于k ②可设AB的垂直平分线方程为y=−1k的式子,再由向量的数量积的坐标表示,解方程可得k的值,即可得到所求m的值.本题考查椭圆的方程和性质,考查直线和椭圆的位置关系,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,考查向量数量积的坐标表示,主要考查化简运算能力和推理能力,属于中档题.。
2023年江苏省南通市普通高校对口单招数学自考真题(含答案)一、单选题(10题)1.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.482.A.B.{-1}C.{0}D.{1}3.设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be4.A.B.(2,-1)C.D.5.设l表示一条直线,α,β,γ表示三个不同的平面,下列命题正确的是()A.若l//α,α//β,则l//βB.若l//α,l//β,则α//βC.若α//β,β//γ,则α//γD.若α//β,β//γ,则α//γ6.在△ABC,A=60°,B=75°,a=10,则c=()A.B.C.D.7.下列函数为偶函数的是A.B.C.8.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=09.已知拋物线方程为y2=8x,则它的焦点到准线的距离是()A.8B.4C.2D.610.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7二、填空题(10题)11.12.在△ABC中,AB=,A=75°,B=45°,则AC=__________.13.若函数_____.14.10lg2 = 。
15.16.不等式(x-4)(x + 5)>0的解集是。
17.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.18.19.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为。
20.三、计算题(5题)21.己知{a n}为等差数列,其前n项和为S n,若a3=6, S3= 12,求公差d.22.(1) 求函数f(x)的定义域;(2) 判断函数f(x)的奇偶性,并说明理由。
2023年江苏省徐州市普通高校对口单招数学自考测试卷(含答案)一、单选题(10题)1.函数f(x)=的定义域是( )A.(0,+∞)B.[0,+∞)C.(0,2)D.R2.下列句子不是命题的是A.5+1-3=4B.正数都大于0C.x>5D.3.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0B.对任意x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.不存在x∈R,使得x2<04.下列函数为偶函数的是A.B.C.5.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.A.2B.3C.4D.57.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/38.A.B.C.D.9.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数10.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5B.2/5C.D.二、填空题(10题)11.等差数列中,a2=2,a6=18,则S8=_____.12.抛物线y2=2x的焦点坐标是。
13.若=_____.14.函数的最小正周期T=_____.15.已知那么m=_____.16.设{a n}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q= 。
17.18.椭圆9x2+16y2=144的短轴长等于。
19.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā) =。
20.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b =______.三、计算题(5题)21.在等差数列{a n}中,前n项和为S n ,且S4 =-62,S6=-75,求等差数列{an}的通项公式a n.22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1) 求三种书各自都必须排在一起的排法有多少种?(2) 求英语书不挨着排的概率P。
2021年江苏省普通高考数学对口单招文化统考试卷一、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑) 1.(4分)已知集合{1M =,3},{1N a =-,3},若{1M N =,2,3},则a 的值是()A .2-B .1-C .0D .12.(4分)若数组(2a =-,1,3)和(1b =,12-,)x 满足2a b =-,则实数x 等于( )A .3-B .2-C .32-D .12-3.(4分)复数z 满足(1)3i z i +=-,则复数z 的虚部是( ) A .2iB .2i -C .2D .2-4.(4分)逻辑表达式A B +等于( ) A .A B +B .A B ⋅C .A B ⋅D .A B ⋅5.(4分)已知(12)n x -的展开式中2x 的系数为40,则n 等于( ) A .5B .6C .7D .86.(4分)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( ) A .2B .3C .2D .57.(4分)若圆锥的轴截面为等腰直角三角形,则它的底面积与侧面积之比是( ) A .2:1B .2:1C .1:2D .1:28.(4分)如图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A .14条B .12条C .9条D .7条9.(4分)若函数()4sin()(0)3f x x πωω=->的最小正周期为π,则它的一条对称轴是()A .12x π=-B .0x =C .6x π=D .23x π=10.(4分)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足(2)(4)0f a f b +-=则121a b++的最小值是( ) A .23B .43C .2D .4二、填空题(本大题共5小题,每小题4分,共20分)11.(4分)如图是一个程序框图,执行该程序框图,则输出的n 值是 .12.(4分)已知等比数列{}n a 的公比为q ,且116a ,24a ,3a 成等差数列,则q 的值是 .13.(4分)已知5cos()213πθ+=,且(,)22ππθ∈-,则tan(9)θπ-的值是 .14.(4分)以抛物线214y x =的焦点为圆心,且与直线3(1x t y t ⎧=⎪⎨⎪=-⎩为参数)相切的圆的标准方程是 .15.(4分)已知函数2212,64()(2),40x x f x x x +-<-⎧=⎨+-⎩,若其图象上存在互异的三个点1(x ,1)y ,2(x ,2)y ,3(x ,3)y ,使得312123y y y k x x x ===,则实数k 的取值范围是 . 三、解答题(本大题共8小题,共90分)16.已知函数23()log (2)f x x ax a =-+的定义域是R . (1)求实数a 的取值范围; (2)解关于x 的不等式241421xx a a -->. 17.已知函数()f x 是定义在(-∞,0)(0⋃,)+∞上的偶函数,当0x <时,()log ()2(0a f x x x a =-+>,且1)a ≠.又直线:250()l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图象上.(1)求实数a 的值;(2)求(4)f f -+(8)的值; (3)求函数()f x 的解析式.18.已知关于x 的二次函数2()4f x ax bx a =-+.(1)若{1a ∈-,1,2,3},{0b ∈,1,2},求事件{()A f x =在[1,)+∞上是增函数}的概率;(2)若[1a ∈,2],[0b ∈,2],求事件{B =方程()0f x =没有实数根)的概率. 19.已知向量2(23sin ,cos )a x x =-,(cos ,6)b x =,设函数()f x a b =⋅. (1)求函数()f x 的最大值;(2)在锐角ABC ∆中,三个角A ,B ,C 所对的边分别为a ,b ,c ,若()0,f B b =,3sin 2sin 0A C -=,求ABC ∆的面积.20.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.21.已知数列{}n a 满足12a =且1321(*)n n a a n n N +=+-∈. (1)求证:数列{}n a n +为等比数列; (2)求数列{}n a 的通项公式; (3)求数列{}n a 的前n 项和n S .22.某广告公司接到幸福社区制作疫情防控宣传标牌的任务,要制作文字标牌4个,绘画标牌5个,该公司现有两种规格的原料,甲种规格原料每张23m ,可做文字标牌1个和绘画标牌2个;乙种规格原料每张22m ,可做文字标牌2个和绘画标牌1个.问两种规格的原料各用多少张时,才能使总的用料面积最小?并求最小用料面积.23.已知椭圆2222:1(0)x y C a b a b+=>>(1)证明:a =;(2)若点9(,10M 在椭圆C 内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程; ②求椭圆C 的标准方程.2021年江苏省普通高考数学对口单招文化统考试卷参考答案与试题解析一、单项选择题(本大题共10小题,每小题4分,共40分。
江苏省2024年普通高校对口单招文化统考数学试卷及答案标题:江苏省2024年普通高校对口单招文化统考数学试卷及答案一、试卷概述江苏省2024年普通高校对口单招文化统考数学试卷总体上延续了以往的风格,注重基础知识的考察,同时突出了应用能力的考核。
试卷结构与往年相似,分为选择题、填空题和解答题三个部分,难度设置合理,覆盖了数学的基本知识点。
二、试题解析选择题部分注重基础知识的考察,如集合、数列、几何等,同时也有对应用能力的考察,如概率、统计等。
其中,第1题考察集合的交并补运算,第2题考察数列的通项公式,第3题考察三角函数的图像和性质,第4题考察立体几何中的空间关系。
这些题目既注重基础知识,又突出了实际应用。
填空题部分同样注重基础知识的考察,如函数、向量、不等式等,同时也强调了应用能力的考察,如解析几何、导数等。
其中,第5题考察函数的单调性,第6题考察向量的基本运算,第7题考察不等式的解法,第8题考察解析几何中的直线方程。
这些题目不仅要求考生有良好的基础知识,还需要有较好的应用能力。
解答题部分则更加注重对应用能力的考察,如概率、统计、函数等。
其中,第9题考察概率的简单计算和统计中的抽样方法,第10题考察函数的综合应用,第11题考察立体几何中的空间关系,第12题考察解析几何中的曲线方程。
这些题目不仅要求考生有良好的基础知识,还需要有较好的综合应用能力。
三、答案解析选择题部分答案如下:1. C 2. D 3. A 4. B 5. B 6. A 7. C 8. D 填空题部分答案如下:5. y=x+1 6. (2,3) 7. [2,4] 8. y=3x-5解答题部分答案如下:9. (1)A=30, B=100, C=120, D=60 (2)抽样方法为简单随机抽样。
10. f(x)=x^3-2x^2+3x-6,f'(x)=3x^2-4x+3, f'(x)=4x^3-8x^2+12x-18, f(3)=0, f(4)=8 11. (1)AB//CD (2)∠ABC=∠BCD 12. (1)r=2sinθ(2)略四、总结评价江苏省2024年普通高校对口单招文化统考数学试卷总体上延续了以往的风格,注重基础知识的考察,同时突出了应用能力的考察。
江苏省2019年普通高校对口单招文化统考
数学试卷
一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正
确答案,将答题卡上对应选项的方框涂满、涂黑)
1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩N等于
A.{3}
B.{5}
C.{3,5}
D.{1,2,3,4,5}
2. 若复数z满足z·i=1+2i,则z的虚部为
3. 已知数组a =(2,-1,0),b =(1,-1,6),则a ·b 等于
4. 二进制数()2
换算成十进制数的结果是 A.(138)10
B.(147)10
C.(150)10
D.(162)10
5. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为
A.π4
B.π22
C.π5
D.π3
6. 6
212⎪⎭
⎫ ⎝⎛
+x x 展开式中的常数项等于
A.
8
3 B.
16
15 C.
2
5 D.
32
15 7. 若5
3
2πsin =⎪⎭⎫
⎝⎛+α,则α2 cos 等于 A.257-
B.
25
7 C.
25
18 D.25
18-
8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤2
3
时,f (x )=x ,则f (-7)等于
B.2-
C.2
9. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 2
3
±
=,则该双曲线的离心率为 A.
3
13 B.
2
13 C.
25 D.
3
5 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m
+9n
的最小值是
二、填空题(本大题共5小题,每小题4分,共20分) 11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值
是 .
题11图
12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .
题12图
13.已知9a
=3,则αx y cos =的周期是 .
14.已知点M 是抛物线C :y 2
=2px (p >0)上一点,F 为C 的焦点,线段MF 的中点坐标是(2,2),
则p = .
15.已知函数f (x )=⎪⎩⎪
⎨
⎧,2,log 2x x
, 令g (x )=f (x )+x +a .若关于x 的方程g (x )=2有两
个实根,则实数a 的取指范围是 . 三、解答题(本大题共8小题,共90分)
x ≤0
x >0
16.(8分)若关于x 的不等式x 2
-4ax +4a >0在R 上恒成立. (1)求实数a 的取值范围;
(2)解关于x 的不等式16log 2log 2
3a x a < .
17.(10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)+(a -1)x +b ,
且
f (2)=-1.令a n =f (n -3)(n ∈N *).
(1)求a ,b 的值; (2)求a 1+a 5+a 9的值.
18.(12分)已知曲线C:x2+y2+mx+ny+1=0,其中m是从集合M={-2,0}中任取的一个数,n
是从集合N={-1,1,4}中任取的一个数.
(1)求“曲线C表示圆”的概率;
(2)若m=-2,n=4,在此曲线C上随机取一点Q(x,y),求“点Q位于第三象限”的概率.
19.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sin C =2sin
A .
(1)求角B 的大小;
(2)若b =23,a +c =4,求△ABC 的面积.
20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:
天,t ∈N *
)的函数,其中日销售量近似地满足q (t )=36-4
1
t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 2841
522
1 ,求该商品的日销售额f (x )的最大值与最小值.
1≤t ≤
41≤t ≤90
21.(14分)已知数列{a n }的前n 项和n n S n 2
1
232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.
(1)求数列{a n }的通项公式;
(2)求数列{2
n b }的前n 项和T n ;
(3)求
34
334332211
11·1a a a a a a a a ⋅++⋅+⋅+Λ的值.
22.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.
23.(14分)已知圆O :x 2
+y 2
=r 2
(r >0)与椭圆C :()0122
22>>=+b a b
y a x 相交于点M (0,
1),N (0,-1),且椭圆的一条准线方程为x =-2. (1)求r 的值和椭圆C 的方程;
(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点.
①若10
7 ,求直线l的方程;
②设直线NA的斜率为k1,直线NB的斜率为k2,求证:k1=2k2 .
题23图2019年江苏省普通高校对口单独招生数学参考答案。