整流滤波电路
- 格式:pdf
- 大小:341.78 KB
- 文档页数:18
整流滤波电路工作原理
整流滤波电路是一种常见的电力电子结构,用于将交流电转换为直流电。
其工作原理是通过使用二极管进行整流,去除交流电信号的负半周,然后通过电容器进行滤波,去除残留的交流波动,最终得到稳定的直流电。
整流器的核心部件是二极管。
当输入为正半周时,二极管导通,电流通过,产生正向偏置电压。
这样,整流器将正半周的交流信号转换为正向的直流信号;当输入为负半周时,二极管截止,不导通,电流不通过。
因此,整流电路去除了负半周的交流信号。
在整流器输出后,接入电容器进行滤波。
电容器具有存储电荷和释放电流的特性。
当输入为正半周时,电容器充电并储存电荷;当输入为负半周时,电容器通过释放储存的电荷继续提供电流。
这样,电容器平滑输出,并去除了电流的纹波。
整流滤波电路可广泛应用于电源供应器等领域,用于将交流电转换为直流电并提供给电子元器件使用。
它的工作原理简单、高效,能够实现稳定的直流电输出。
整流滤波电路工作原理
整流滤波电路的工作原理是将交流信号转换为直流信号,并通过滤波电路去除交流信号中的高频噪声。
首先,交流信号经过整流电路,将负半周的信号取反,使其变为全为正半周的信号。
然后,经过滤波电路,利用电容器的电荷存储特性,将信号波形变得更平滑,去除其中的高频成分。
最后,得到经过整流和滤波处理后的直流信号。
整流电路一般采用二极管进行,通过二极管的单向导电特性,将负半周的信号反向并截断,只保留正半周的信号。
当输入信号大于二极管的导通电压,二极管处于导通状态,正半周的信号可以通过;当输入信号小于导通电压,二极管处于截断状态,信号无法通过。
因此,整流电路可以将交流信号的负半周截断。
滤波电路主要采用电容器进行,电容器能够储存电荷,具有低阻抗对直流信号和高阻抗对交流信号的特性。
在滤波电路中,电容器将电荷储存起来,并在负载电阻需要电流时释放电荷,保持输出电压的稳定性。
由于电容器的阻抗性质,高频信号更容易通过电容器而被滤除,从而实现滤波的效果。
综上所述,整流滤波电路通过整流电路将交流信号转化为直流信号,然后通过滤波电路去除其中的高频噪声,得到平滑的直流信号输出。
这样就可以实现对交流信号的有效处理,满足电子设备对直流电源的要求。
整流滤波电路输出公式推导一、整流电路基础。
1. 半波整流电路。
- 设输入交流电压u = U_msinω t,其中U_m为交流电压的最大值,ω = 2π f,f为交流电源的频率。
- 在半波整流电路中,二极管只在交流电压的正半周导通。
当二极管导通时,输出电压u_o等于输入电压u;当二极管截止时,输出电压u_o=0。
- 所以,半波整流电路输出电压的平均值U_o(AV)为:- U_o(AV)=(1)/(2π)∫_0^πU_msinω t d(ω t)- 计算积分∫_0^πU_msinω t d(ω t)= - U_mcosω t_0^π=2U_m- 则U_o(AV)=(U_m)/(π)- 又因为U_m = √(2)U(U为交流电压的有效值),所以U_o(AV)=(√(2)U)/(π)≈0.45U。
2. 全波整流电路。
- 对于全波整流电路,它利用了交流电压的正负两个半周。
- 设输入交流电压u = U_msinω t。
- 在正半周,一组二极管导通,负半周另一组二极管导通,使得输出电压在正负半周都有输出(只是方向相同)。
- 全波整流电路输出电压的平均值U_o(AV)为:- U_o(AV)=(1)/(π)∫_0^πU_msinω t d(ω t)- 计算积分∫_0^πU_msinω t d(ω t)= - U_mcosω t_0^π=2U_m- 则U_o(AV)=(2U_m)/(π)- 由于U_m=√(2)U,所以U_o(AV)=(2√(2)U)/(π)≈0.9U1. 电容滤波电路(以全波整流后的电容滤波为例)- 在全波整流电路后面加上电容滤波。
- 当电容充电时,输出电压u_o上升,当电容放电时,输出电压u_o下降。
- 假设在没有负载(R_L=∞)的情况下,电容充电到交流电压的最大值U_m,所以此时输出电压U_o=U_m=√(2)U。
- 当有负载R_L时,电容放电时间常数τ = R_LC。
- 在工程近似计算中,对于全波整流电容滤波电路,当R_LC≥slant(3 - 5)(T)/(2)(T=(1)/(f)为交流电源周期)时,输出电压的平均值U_o近似为:- U_o≈1.2U(U为交流电压有效值)。
4种整流5种滤波电路总结写在前⾯: 本⽂包含内容: 1、变压电路 2、整流电路 2-1:半波整流电路 2-2:全波整流电路 2-3:桥式整流电路 2-4:倍压整流电路 3、滤波电路 3-1:电容滤波电路 3-2:电感滤波电路 3-3:RC滤波电路 3-4:LC滤波电路 3-5:有源滤波电路 4、整流滤波电路总结 4-1:常⽤整流电路性能对照 4-2:常⽤⽆源滤波电路性能对照 4-3:电容滤波电路输出电流⼤⼩与滤波电容量的关系 4-4:常⽤整流滤波电路计算表基本电路: ⼀般直流稳压电源都使⽤220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进⾏稳压,最终成为稳定的直流电源。
这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将⽆法正常⼯作。
1、变压电路 通常直流稳压电源使⽤电源变压器来改变输⼊到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组⽤来输⼊电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是⼀种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁⼒线切割次级线圈产⽣交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路 经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利⽤⼆极管的单项导电特性,将⽅向变化的交流电整流为直流电。
(1)半波整流电路 半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流⼆极管,R1是负载。
B1次级是⼀个⽅向和⼤⼩随时间变化的正弦波电压,波形如图 2-3-3(a)所⽰。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,⼆极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过; π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,⼆极管D1反向截⽌,没有电压加到负载R1上,负载R1中没有电流通过。
整流滤波电路实验报告引言:整流滤波电路在电子学中扮演着重要的角色。
它能够将交流信号转化为直流信号,并通过滤波器对信号进行平滑处理。
在本次实验中,我们将研究和分析不同类型的整流滤波电路的特性和性能。
一、实验目的本次实验的目的是通过搭建和测试不同类型的整流滤波电路,深入理解其工作原理,并分析滤波器的频率响应、波形特性以及效率等参数。
二、实验材料1. 功率放大器2. 变压器3. 整流电路(包括半波和全波整流电路)4. 滤波器电路(如电容滤波、电感滤波)三、实验步骤1. 搭建半波整流电路在实验开始前,我们先搭建了一个基本的半波整流电路。
这个电路由变压器、二极管和负载电阻组成。
通过将交流信号输入变压器,然后通过二极管的单向导通特性,我们可以实现将交流信号转化为单向的直流信号。
接下来,我们分析了该电路的波形特点和效率。
2. 搭建全波整流电路为了提高整流电路的效率,我们搭建了一个全波整流电路。
该电路中使用了一对二极管来实现信号的全波整流。
通过比较半波整流电路和全波整流电路的波形特征和效率,我们可以得出全波整流电路具有更高效率和更为平滑的输出的结论。
3. 添加滤波器电路为了进一步平滑输出信号,我们在整流电路后面添加了滤波器电路,如电容滤波器和电感滤波器。
通过不同滤波器电路的比较,我们可以发现电容滤波器能够有效地滤除高频噪音,而电感滤波器则更适合滤除低频噪音。
实验结果显示,滤波器电路能够显著改善输出信号的稳定性和质量。
四、实验结果分析通过实验数据的记录和分析,我们得出了以下几个结论:1. 全波整流电路相比于半波整流电路,具有更高的效率和更平滑的输出波形。
2. 添加滤波器电路能够进一步平滑输出信号,并有效滤除噪音。
3. 电容滤波器适用于滤除高频噪音,而电感滤波器则适用于滤除低频噪音。
五、实验应用与展望整流滤波电路在现代电子设备和通信系统中具有广泛应用。
它可用于电源转换器、无线通信、音频放大器等各种应用场景。
在未来,我们可以进一步研究和改进整流滤波电路的设计,以提高其性能和适应更多的应用需求。
物理实验中心实验指导书整流、滤波与稳压电路ﻬ整流、滤波与稳压电路整流电路是将工频交流电转为具有直流电成分的脉动直流电。
整流电路由整流器件组成。
滤波电路是将脉动直流中的交流成分滤除,减少交流成分,增加直流成分。
滤波电路直接接在整流电路后面,通常由电容器,电感器和电阻器按照一定的方式组合而成。
作用是把脉动的直流电变为平滑的直流电供给负载.1所示。
滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。
电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。
经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。
一、实验目的1。
了解整流、滤波电路的作用。
2。
进一步熟悉示波器的使用.3.观察单相半波、单相桥式及单相桥式整流电容滤波电路的输入、输出电压波形。
二、实验原理为方便分析,把二极管当作理想器件,即认为它加上正向电压导通时电阻为零,加上反向电压截止时电阻为无穷大。
电容器在电路中有储存和释放能量的作用,电源供给的电压升高时,它把部分能量储存起来,而当电源电压降低时,就把能量释放出来,从而减少脉动成分,使负载电压比较平滑。
1.单相半波整流电路电路如图2所示.设在输入交流电压正半周:A端为正、B端为负,二极管因承受正向电压而导通,电流IL通路是A-V1-R L-B.忽略二极管正向压降时,输入电压全部加在负载R L上.在输入交流电压负半周:B端为正、A端为负,二极管因承受反向电压而截止。
输入电压几乎全部降落在二极管V上,负载RL上电压基本为零.图1 直流稳压电路方框图由图5可见,在交流电一个周期内,二极管半个周期导通半个周期截止,以后周期重复上述过程。
2。
单相桥式整流电路电路如图3所示。
设在输入交流电压正半周:A端为正、B端为负,即A 点电位高于B点电位。
二极管V1、V3因承受正向电压而导通,二极管V2、V4因承受反向电压而截止,电流IL1通路是A-V1—R L—V3-B.忽略二极管正向压降时,负载R L上得到一个半波电压。
一、整流电路的工作原理整流电路是将交流电信号转换成直流电信号的电路。
其工作原理主要通过二极管的导通和截止来实现。
在正半周的电压周期内,二极管处于导通状态,电流可以顺利通过;而在负半周的电压周期内,二极管处于截止状态,电流无法通过。
这样,交流电信号经过整流电路后,就可以转化为直流电信号输出。
二、滤波电路的工作原理滤波电路是用来去除整流后直流电信号中的脉动成分,使得输出的电压更加平稳。
其主要原理是通过电容器的充放电来吸收和释放交流电信号中的高频脉动成分。
在充电时,电容器可以吸收一部分脉动成分;在放电时,电容器则会释放出积累的电荷,从而使输出的电压更加稳定。
三、稳流电路的工作原理稳流电路是为了在负载变化时,仍然能够保持输出电流恒定的电路。
其原理是通过负反馈控制电路的工作点,使得在负载变化时,电路可以自动调整输出电流,从而避免因负载变化而导致的输出电流波动。
四、稳压电路的工作原理稳压电路是为了在输入电压波动时,能够保持输出电压恒定的电路。
其工作原理主要包括串联稳压和并联稳压两种方式。
串联稳压是通过调整输出电压与输入电压之间的电压差,以维持输出电压稳定;而并联稳压则是通过电容器和电感器等元件来减小输入电压的波动,从而实现输出电压的稳定。
五、结论整流、滤波、稳流、稳压电路是电子电路中常见的几种基本电路,它们通过不同的原理和组合方式,可以实现对交流电信号的转换和处理,从而得到稳定的直流电信号输出。
在实际应用中,这些电路通常会被应用于各种电子设备和电源系统中,起到了至关重要的作用。
对这些电路的工作原理有深入的了解,对于电子工程领域的从业者来说,是非常重要的。
六、整流、滤波、稳流、稳压电路在电子设备中的应用上文我们已经介绍了整流、滤波、稳流、稳压电路的工作原理,接下来我们将重点谈谈这些电路在电子设备中的应用。
1. 整流电路的应用整流电路是将交流电信号转换成直流电信号的关键电路之一,广泛应用于各种电源设备和电子设备中。
整流滤波电路的工作原理
整流滤波电路的工作原理是将交流信号转换为直流信号,并对直流信号进行滤波以去除杂波。
该电路由整流器和滤波器两部分组成。
整流器的作用是将交流信号转换为直流信号。
常见的整流器有两种类型:半波整流器和全波整流器。
半波整流器只对输入信号的正半周进行整流,而全波整流器则对整个输入信号进行整流。
滤波器的作用是对整流后的信号进行滤波,确保输出信号的平滑度和稳定度。
常见的滤波器有两种类型:电容滤波器和电感滤波器。
电容滤波器通过将电容器连接到整流器的输出端,使得信号通过电容器时,低频信号得以通过而高频信号被滤除;而电感滤波器则通过将电感线圈连接到整流器的输出端,使得高频信号通过电感线圈时被滤除,而低频信号得以通过。
整流滤波电路的工作原理可以通过以下步骤来描述:
1. 输入的交流信号通过整流器进行整流,将负半周的信号全部转换为正半周的信号。
2. 整流后的信号通过滤波器进行滤波,去除高频杂波,使得输出信号更加平滑。
3. 经过滤波的信号即为直流信号,可用于驱动其他电路或设备的供电。
整流滤波电路常用于电源供应、无线通信等领域,可以提供稳定的直流电源,并减少输出信号中的杂散噪声。
完整版整流滤波电路实验报告
本次实验是为了验证整流滤波电路的正确性,所实验的电路如图1所示。
图1 整流滤波电路
实验准备:平衡负载电阻、电源电压表、普通万用表以及示波器等实验仪器。
实验步骤:
1. 使用普通万用表测量BJT的正向击穿电压以及导通路的电阻,测量值为 VCE=0.45V 和RCE=3.75kΩ 。
2. 加入占空比可调电压源,改变占空比,观察变振宽的变化情况,记录下来。
3. 加入有平衡电阻的负载,观察有平衡电路的纹波和无平衡电路纹波的比较,记录下来。
实验结果:
1. 占空比对变振宽影响:
当占空比从 0.1 到 0.9 时,变振宽从 0.4ms 增加到 2.48ms,变化趋势呈明显下降趋势。
2. 平衡电路对纹波影响:
当占空比为 0.5 时,有平衡电路的纹波电压峰值仅维持在 0.08V,而在无平衡电路时,反复上升,有多次大幅度变化,峰值最高达 8V。
实验结论:从本次实验的结果可以看出,调整占空比可以改变变振宽,而加入有平
衡电阻的负载可以减少纹波幅值,从而证明整流滤波电路的有效性。
直流电源是指输出电压恒定的电源,它是许多电子设备的重要组成部分。
直流电源的整流电路和滤波电路是直流电源中不可或缺的重要组成部分,它们起着将交流电转化为稳定的直流电的作用。
一、整流电路1. 整流器的作用整流器是将交流电信号转换为单向导通的电流的电子器件。
它通常由二极管或其他半导体器件构成。
当交流信号输入整流器时,整流器会使其中的电流只能单向流动,从而将交流电转化为直流电。
2. 常见的整流电路常见的整流电路有单相半波整流电路、单相全波整流电路、三相半波整流电路和三相全波整流电路。
其中,单相半波整流电路和单相全波整流电路是在单相电源下使用的,而三相半波整流电路和三相全波整流电路则是在三相电源下使用的。
3. 整流电路的特点整流电路能够将交流电转化为直流电,并且在整流过程中会有一定的电压损失。
在选择整流电路时,需要根据实际需求来确定是否需要使用滤波电路进行进一步处理。
二、滤波电路1. 滤波器的作用滤波器是指对电路中的信号进行滤波的电子器件。
在直流电源中,滤波器的作用是去除输出电压中的脉动成分,使得输出电压更加稳定。
常见的滤波器包括电容滤波器和电感滤波器。
2. 电容滤波器电容滤波器是一种常用的直流电源滤波器。
它通过在电路中串联一个电容器来实现滤波的效果。
当直流电压通过电容器时,电容器会储存电荷并平滑输出电压脉动。
电容滤波器适用于对工作频率较高的电路进行滤波。
3. 电感滤波器电感滤波器是另一种常见的直流电源滤波器。
它通过在电路中并联一个电感元件来实现滤波的效果。
电感元件对不同频率的电流有不同的阻抗,从而可以将高频脉动成分去除。
电感滤波器适用于对工作频率较低的电路进行滤波。
4. 深振滤波器深振滤波器是一种结合了电容滤波和电感滤波优点的新型滤波器。
它能够同时适用于高频和低频的滤波需求,具有较好的滤波效果和稳定性。
三、整流电路和滤波电路的应用1. 电子设备中的应用整流电路和滤波电路广泛应用于各种电子设备中,如手机充电器、电脑电源适配器、数码相机等。
第一节整流电路电力网供给用户的是交流电,而各种无线电装置需要用直流电。
整流,就是把交流电变为直流电的过程。
利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。
下面介绍利用晶体二极管组成的各种整流电路。
一、半波整流电路图5-1、是一种最简单的整流电路。
它由电源变压器B 、整流二极管D 和负载电阻R fz ,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。
变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。
在0~π时间内,e2为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,R fz,上无电压。
在2π~3π时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压U sc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc=0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
图5-3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。
变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、R fz与e2b 、D2、R fz ,两个通电回路。
全波整流电路的工作原理,可用图5-4 所示的波形图说明。
在0~π间内,e2a 对Dl为正向电压,D1导通,在R fz 上得到上正下负的电压;e2b 对D2为反向电压,D2不导通(见图5-4(b)。
在π-2π时间内,e2b 对D2为正向电压,D2导通,在R fz 上得到的仍然是上正下负的电压;e2a 对D1为反向电压,D1不导通(见图5-4(C)。
如此反复,由于两个整流元件D1、D2轮流导电,结果负载电阻R fz 上在正、负两个半周作用期间,都有同一方向的电流通过,如图5-4(d)所示的那样,因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(U sc=0.9e2,比半波整流时大一倍)。
半波整流时大一倍)。
图5-3所示的全波整滤电路,需要变压器有一个使两端对称的次级中心抽头,这给制作上带来很多的麻烦。
另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。
三、桥式整流电路桥式整流电路是使用最多的一种整流电路。
这种电路,只要增加两只二极管连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。
图5-5(a )为桥式整流电路图,(b)图为其简化画法。
桥式整流电路的工作原理如下:e2为正半周时,对D1、D3加正向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。
电路中构成e2、Dl、R fz 、D3通电回路,在R fz ,上形成上正下负的半波整流电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。
电路中构成e2、D2、R fz 、D4通电回路,同样在R fz 上形成上正下负的另外半波的整流电压。
上述工作状态分别如图5-6(A) (B)所示。
图5-6(A)、5-6(B)如此重复下去,结果在R fz ,上便得到全波整流电压。
其波形图和全波整流波形图是一样的。
从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半!四、整流元件的选择和运用需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。
如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。
表5-1 所列参数可供选择二极管时参考。
"另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。
图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半口三只二极管并联,每只分担电路总电流的三分之一。
总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。
但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。
因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。
这种均流电阻R一般选用零点几欧至几十欧的电阻器。
电流越大,R应选得越小。
图5-8示出了二极管串联的情况。
显然在理想条件下,有几只管子串联,每只管子承受的反向电压就应等于总电压的几分之一。
但因为每只二极管的反向电阻不尽相同,会造成电压分配不均:内阻大的二极管,有可能由于电压过高而被击穿,并由此引起连锁反应,逐个把二极管击穿。
在二极管上并联的电阻R,可以使电压分配均匀。
均压电阻要取阻值比二极管反向电阻值小的电阻器,各个电阻器的阻值要相等第二节滤波电路交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。
这种脉动直流一般是不能直接用来给无线电装供电的。
要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。
换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。
一、电容滤波电容器是一个储存电能的仓库。
在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。
充电的时候,电容器两端的电压逐渐升高,直到接近充电电压;放电的时候,电容器两端的电压逐渐降低,直到完全消失。
电容器的容量越大,负载电阻值越大,充电和放电所需要的时间越长。
这种电容带两端电压不能突变的特性,正好可以用来承担滤波的任务。
图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。
在二极管导通期间,e2向负载电阻R fz提供电流的同时,向电容器C充电,一直充到最大值。
e2达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。
这时,D受反向电压,不能导通,于是Uc便通过负载电阻R fz放电。
由于C和R fz较大,放电速度很慢,在e2下降期间里,电容器C上的电压降得不多。
当e2下一个周期来到并升高到大于Uc时,又再次对电容器充电。
如此重复,电容器C两端(即负载电阻R fz:两端)便保持了一个较平稳的电压,在波形图上呈现出比较平滑的波形。
图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。
显然,电容量越大,滤波效果越好,输出波形越趋于平滑,输出电压也越高。
但是,电容量达到一定值以后,再加大电容量对提高滤波效果已无明显作用。
通常应根据负载电阻和输出电流的大小选择最佳电容量。
表5-2中所列滤波电容器容量和输出电流的关系,可供参考。
电容器的耐压值一般取的表5-3中列出带有滤波器的整流电路中各电压的关系。
表一、 输出电流 2A 左右 1A 左右0.5-1A 左右 0.1-0.5A 100-50mA 50mA以下滤波电容4000u2000u 1000u 500u 200u-500u200u表二、输入交流电压(有效值) 负载开路时的输出电压 带负载时的 输出电压 每管承受的最大反向电压半 波 整 流 全 波 整 流 桥 式 整 流 E2 E2+E2 E2约0.6E2 约1.2E2 约1.2E2采用电容滤波的整流电路,输出电压随输出电流变化较大,这对于变化负载(如乙类推挽电路)来说是很不利的。
第四节简单的稳压电路交流电经过整流可以变成直流电,但是它的电压是不稳定的:供电电压的变化或用电电流的变化,都能引起电源电压的波动。
要获得稳定不变的直流电源,还必须再增加稳压电路。
要了解稳压电路的工作,得从稳压管说起。
一、有“特异功能”的二极管稳压管一般三极管都是正向导通,反向截止;加在二极管上的反向电压、如果超过二极管的承受能力,二极管就要击穿损毁。
但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;反过来着,只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。
这种特殊的二极管叫稳压管。
稳压管的型号有2CW 、2DW 等系列,它的电路符号如图5-17所示。
稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。
稳压管是利用反向击多区的稳压特性进行工作的,因此、稳压管在电路中要反向连接。
稳压管的反向击穿电压称为稳定电压、不同类型稳压管的稳定电压也不一样,某一型号的稳压管的稳压值固定在口定范围。
例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。
在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联一办或几只硅二极管“枕垫”,把稳定电压提高到所需数值。
这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。
因此,二极管在电路中必须正向连接,这是与稳压管不同的。
稳压管稳压性能的好坏,可以用它的动态电阻r来表示:显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。
稳压管的动态电阻是随工作电流变化的,工作电流越大。
动态电阻越小。
因此,为使稳压效果好,工作电流要选得合。
工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。
各种型号管子的工作电流和最大允许电流,可以从手册中查到。
稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃ ,说明温度每升高1℃,其稳定电压升高11.4毫伏。