数据代表2八年级数学课件
- 格式:ppt
- 大小:1.04 MB
- 文档页数:18
利用统计图表传递信息学校名称教师姓名一、教材分析:二、学生情况分析:三、教学目标:1、能用简单的统计表、折线图、条形图、扇形图来表示你所收集到的数据,并能识别它们各自有的优点。
2、通过对数据的学习掌握分类比较的思考方式,理解数据与图表之间的联系。
3、激发学生学习的兴趣,培养学生在生活实践活动中主动参与的积极性,注重对社会知识能力的应用!四、教学重点、难点:重点:能说出图表所反映的信息.难点:根据已知数据来绘制统计图,能理解各自图表的特点并加以应用.五、课时安排:1课时六、教学过程:1、创设情境:小明统计了最近一个星期李大爷平均天能卖出的A、B、C、D、E五个牌子的雪糕的数量,并绘制出下图.从统计图中你能得到什么信息?2、问题3:在2012年第30届伦敦奥林匹克运动会上,中国体育代表团取得了很好的成绩.(1)中国体育健儿在该届奥运会上共获得多少枚奖牌?获得的金牌数在总金牌数中占多大的比例?(2)从所获奖牌的总数看,和最近几届奥运会相比,中国体育健儿在本届奥运会上的成绩如何?上面只是提出了问题,并没有给出回答问题所需要的数据. 因此,我们首先需要收集该届以及最近几届奥运会上各个代表团获得奖牌的数据.下表是第30届奥运会上获得奖牌总数最多的四个代表团在最近两届奥运会获得的奖牌数统计表(表中数据来自/medals).先回答题(1).表中表明,中国体育健儿在第30届奥运会上共获得88枚奖牌,其中金牌38枚,约占该届奥运会总金牌数302枚的13%.根据表中各国第30届奥运会所获得金牌数,可以用计算机软件很快画出下图,它们分别是美、中、俄、英等国在该届奥运会上所获得金牌数的条形统计图和扇形统计图.用计算机软件可以很快画出这些统计图.你知道图中中国占13%是怎么计算出来的吗?接下来回答题(2).可以先比较我国体育健儿在最近七届奥运会上所获奖牌总数的情况,再看这四个代表团在最近两届奥运会所获奖牌总数上的各自表现.3、思考:(1)在图中用一条折线将七届奥运会的数据连起来了,请问介于相邻两届之间的六条线段是否表示某种意思?连线是为了显示什么?画上连线只是为了便于观察图像所反映的变化而已,六条线段不表示什么意思.(2)与第29届北京奥运会相比,我国代表团在这一届获得的奖牌总数有所下降,你怎么解释这个结果呢?如下图传达的信息对你的分析有什么帮助吗?要比较客观地评价一个代表团在一届奥运会上的表现的确是很困难的,总奖牌数下降有多种原因.比如上一届是东道主,天时地利人和;这一届没能保住上一届在某些项目上的优势;其他代表团在某些项目上显著进步等等.有人认为只看金牌总数或奖牌总数都不够全面,建议比较金牌和银牌的总数等.你比较赞同怎样的方案?你还能再提出一个你认为更合理的方案吗?说说你理由.4、课堂练习:1.下表是第30届奥运会上中国代表团的奖牌榜,请用合适的统计图直观地表示这些数据,并说说你从这些数据中发现了哪些信息?2.下表中列出了第30届奥运会上中国代表团获得金牌的项目,请你通过查询网站了解其他国家代表团(如美国)获得金牌的项目和中国代表团有什么差异,并用统计表把这些数据表示出来,然后就这届奥运会上中国体育健儿的表现谈谈你的想法.(参考网站:/medals)5、课堂小结6、板书设计:七、教学反思:利用统计图表传递信息(课题) 问题3 思考 课堂练习1-2。
第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。
2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。
3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。
4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。
5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。
一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
欧拉莱昂哈德·欧拉(Leonhard Euler 公元1707-1783年)也有翻译为欧勒,18世纪最优秀的数学家,也是历史上最伟大的数学家之一,被称为“分析的化身”.引述评价“读欧拉原著:在任何意义上,他都是我们的大师.” —拉普拉斯生平1707年出生在瑞士的巴塞尔(Basel)城,小时候他就特别喜欢数学,不满10岁就开始自学《代数学》.这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教.13岁就进巴塞尔大学读书,这在当时是个奇迹,曾轰动了数学界.小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生.在大学里得到当时最有名的数学家微积分权威约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导,并逐渐与其建立了深厚的友谊.约翰·伯努利后来曾这样称赞青出于蓝而胜于蓝的学生:“我介绍高等分析时,他还是个孩子,而你将他带大成人.”两年后的夏天,欧拉获得巴塞尔大学的学士学位,次年,欧拉又获得巴塞尔大学的哲学硕士学位.1725年,欧拉开始了他的数学生涯.欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖金后,他的父亲就不再反对他攻读数学了.1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算彗星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.欧拉完全失明以后,虽然生活在黑暗中,但仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁.欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲.欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"读读欧拉、读读欧拉,它是我们大家的老师!" 当欧拉64岁高龄之时,一场突如其来的大火烧掉了他几乎全部的著述,而神奇的欧拉用了一年的时间口述了所有这些论文并作了修订.一年以后,1783年9月18日的下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我要死了",欧拉终于"停止了生命和计算".欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.可以说欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文(七十余卷,牛顿全集八卷,高斯全集十二卷),其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学、物理、天文、建筑以至音乐、哲学方面都取得了辉煌的成就.在数学的各个领域,常常见到以欧来命名的公式、定理、和重要常数.课本上常见的如π(1736年),i(1777年),e(1748年),sin和cos (1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734年)等,都是他创立并推广的.歌德巴赫猜想也是在他与歌德巴赫的通信中提出来的.欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论.欧拉一生能取得伟大的成就原因在于:惊人的记忆力;聚精会神,从不受嘈杂和喧闹的干扰;镇静自若,孜孜不倦.欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家.生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt).父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶.但父亲却执意让他攻读神学,以便将来接他的班.幸运的是,欧拉并没有走父亲为他安排的路.父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(JohannBernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊.由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家).他俩经常给小欧拉讲生动的数学故事和有趣的数学知识.这些都使欧拉受益匪浅.1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉.当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课.约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来.他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手.在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路.1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金.这标志着欧拉的羽毛已丰满,从此可以展翅飞翔.欧拉的成长与他这段历史是分不开的.当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式.直至晚年,他还能复述年轻时的笔记的全部内容.高等数学的计算他可以用心算来完成.尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象.由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路.这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(grange,1736.1.25-1813.4.10).欧拉本人虽不是教师,但他对教学的影响超过任何人.他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作.他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响.有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书.欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂.而欧拉的文字既轻松易懂,堪称这方面的典范.他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色.他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书.他编写的初等代数和算术的教科书考虑细致,叙述有条有理.他用许多新的思想的叙述方法,使得这些书既严密又易于理解.欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的.他证明了任一非零实数R有无穷多个对数.欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的.欧拉的定义使三角学跳出只研究三角表这个圈子.欧拉对整个三角学作了分析性的研究.在这以前,每个公式仅从图中推出,大部分以叙述表达.欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式.欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化.欧拉得到的著名的公式,又把三角函数与指数函联结起来.在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号.如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用∑表示求和,用 i表示虚数等.圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行.而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式中.欧拉不但重视教育,而且重视人才.当时法国的拉格朗日只有19岁,而欧拉已48岁.拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题.后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名.欧拉19岁大学毕业时,在瑞士没有找到合适的工作.1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功.这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才.已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯.在这种情况下,欧拉离开了自己的祖国.由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手.在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位.1731年,又被委任领导理论物理和实验物理教研室的工作.1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人.在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作.古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师.1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念.同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学.并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作.1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖.在这篇文章中,欧拉把热本质看成是分子的振动.欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层.他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师.他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论.正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就.欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献.如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度.另外,他还为科学院机关刊物写评论并长期主持委员会工作.他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析.1735年,欧拉着手解决一个天文学难题──计算彗星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成).由于欧拉使用了自己发明的新方法,只用了三天的时间.但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明.这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作.但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷.事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林.尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长.1759年成为柏林科学院的领导人.在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用.他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的.如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的.此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和彗星的运动理论》、《月球运动理论》、《日蚀的计算》等著作.在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地.他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人.他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科.比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金.不仅如此,他还为普鲁士王国解决了大量社会实际问题.1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养.后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话.自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功.她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职.欧拉自然成了她主要聘请的对象.1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件.这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟.除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作.然而,厄运再次向他袭来.由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中.但欧拉是坚强的,他用口授、别人记录的方法坚持写作.他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解.1768年,《积分学原理》第一卷在圣彼得堡出版.1770年第三卷出版.同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来.1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中.在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来.欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬.种种磨难,并没有把欧拉搞垮.大火以后他立即投入到新的创作之中.资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究.欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流.欧拉总是把推理过程想得很细,然后口授,由他的长子记录.他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上.1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中.从而创立了一个新的分支──变分法.另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究.后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论.为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜.研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》.欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报.就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的.作为这样一位科学巨人,在生活中他并不是一个呆板的人.他性情温和,性格开朗,也喜欢交际.欧拉结过两次婚,有13个孩子.他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事.欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻.1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了".一位科学巨匠就这样停止了生命.历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律.由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉.大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师."被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它".欧拉的对数学各个领域的贡献欧拉的结果分散在数学的各个领域里,几乎在数学每个领域都可以看见欧拉的名字,以欧拉命名的定理、公式、函数等不计其数,其中有:Euler公式Euler常数Euler函数Euler定理2、乔治·安德鲁·欧拉(George Andrew Olah)欧拉教授于1927年5月22日生于匈牙利首都布达佩斯的一个律师家庭,1949年在布达佩斯工业大学获博士学位;1957年移居美国进入道氏化学公司工作,1967年在凯斯西部大学任教,1977年进入南加州大学洛克尔碳氢化合物研究所工作,1991年出任该所主任.碳正离子是一种带正电的极不稳定的碳氢化合物.分析这种物质对发现能廉价制造几十种当代必需的化工产品是至关重要的.欧拉教授发现了利用超强酸使碳正离子保持稳定的方法,能够配制高浓度的碳正离子和仔细研究它.他的发现已用于提高炼油的效率、生产无铅汽油和研制新药物.欧拉教授的主要的研究方向有:亲电反应;反应机理;锌的合成方法;有机金属化学;反应中间体;稳定的碳正离子;付瑞迪尔-克拉(Friedel-Crafts Chemistry)佛兹烷基化反应;超强酸化学的等等.他独自或以第一作者发表论文707篇.其中,稳定的碳正离子系列文章有282篇.奖项:诺贝尔化学奖获奖时间:1994年获奖理由:他发现了使碳阳离子保持稳定的方法,在碳正离子化学方面的研究.1994年10月12日,瑞典皇家科学院宣布授予美国南加利福尼亚大学有机化学家乔治·安德鲁·欧拉(George Andrew Olah)教授1994年度诺贝尔化学奖,表彰他在碳正离子化学研究方面所作的贡献.他从小就接受非常严格的中小学训练,有扎实的基础知识.欧拉曾对匈牙利的历史如痴如迷,后来把兴趣转向自然科学.在高中毕业后,他进入Techni-cal University of Budapest,在Geza Zemplén教授的指导下从事有机化学方面的学习及研究,于1949年获理学博士学位,当时年仅22岁.大学几年的学习与研究,把欧拉与有机化学紧紧地连在一起,从此他正式步入了他的有机化学生涯.由于Zemplén是Emil Fischer的学生,欧拉自称他自己是Fischer的“徒孙”.1956年,欧拉移居加拿大,在Dow Chemical公司任资深化学研究员.1957年迁居美国后,继续在该公司任职至1964年.欧拉对碳正离子的早期工作正是在这期间完成的.1965至1977年间,欧拉在Case Western大学任教授.从1977年至今,在南加利福尼亚大学(Universi-ty of Southern California)任讲座教授,并为该大学的Locker碳氢化合物。