AirTac气动元件计算与选型
- 格式:pdf
- 大小:6.15 MB
- 文档页数:83
神威气动 文档标题:airtac气缸一、airtac气缸的介绍:引导活塞在缸内进行直线往复运动的圆筒形金属机件。
空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。
涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。
气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。
二、气缸种类:①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以做功。
⑤无杆气缸:没有活塞杆的气缸的总称。
有磁性气缸,缆索气缸两大类。
做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
三、气缸结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示:2:端盖端盖上设有进排气通口,有的还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。
杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。
导向套通常使用烧结含油合金、前倾铜铸件。
端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
3:活塞活塞是气缸中的受压力零件。
为防止活塞左右两腔相互窜气,设有活塞密封圈。
活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。
耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。
活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。
神威气动 文档标题:airtac气缸传感器airtac气缸传感器的介绍:引导活塞在缸内进行直线往复运动的圆筒形金属机件。
空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。
涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。
气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。
二、气缸种类:①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以做功。
⑤无杆气缸:没有活塞杆的气缸的总称。
有磁性气缸,缆索气缸两大类。
做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
三、气缸结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示:2:端盖端盖上设有进排气通口,有的还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。
杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。
导向套通常使用烧结含油合金、前倾铜铸件。
端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
3:活塞活塞是气缸中的受压力零件。
为防止活塞左右两腔相互窜气,设有活塞密封圈。
活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。
耐磨环长使用聚氨酯、神威气动 聚四氟乙烯、夹布合成树脂等材料。
活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。
气动调节阀选型及计算执行器就是控制系统的终端控制元件,就是重要的环节,气动调节阀在常用的执行器中约占85﹪以上。
控制系统中因气动调节阀造成不能投运或运行不良者有占50﹪-60﹪以上。
其中除提供的工艺参数出入较大,阀制造质量欠佳与使用不当外,选型与计算的方法不妥则就是一个相当突出的因素。
因此,如何合理正确地选择与计算气动调节阀就就是自控设计中至关重要的问题了。
调节阀按调节仪表的控制信号,直接调节流体的流量,在控制系统中起着十分重要的作用。
要根据使用条件与用途来选择调节阀。
选择调节阀项目有:结构型式、公称通经、压力-温度等级、管道连接、上阀盖型式、流量特性、材料及执行机构等。
深入研究各个项目与它们之间的相互关系,就是极其重要的。
选择调节阀必须知道控制系统的各种工艺参数,以及调节仪表、管道连接等基本条件,才能正确地选择调节阀。
下面为一般选用调节阀的基本准则:(图一、图二)调节阀的选择工艺流体条件流体名称、流量、进/出口确认选择条件压力、全开/全关时压差、温度、比重、粘度、泥浆等。
选择品种规格调节仪表条件流量特性、作用型式、调节仪表输出信号等。
写出规格书管道连接条件公称压力、法兰连接型式、材料等。
(图二)选型与计算(定尺寸)就是选择一个调节阀的两个重要部分。
它们就是不同的,然而又就是互相关联的。
以往,各工业部门的自控设计的选阀工作有些基本上没有考虑到它们之间的内在联系。
对国内一般产品来说,用一组工艺参数计算两个不同阀型的流通能力,临界条件下的计算结果最大可相差40%以上。
不同结构的调节阀有其各自的压力恢复特性。
此特性用压力恢复系数F L或最大有效压差比X T表示。
一般的单、双座阀等属于低压力恢复阀,F L与X T较大;蝶阀与球阀等属于高压力恢复阀,F L与X T较小;偏心旋转阀则介于两者之间。
参数F L与X T的引入有助于在计算中根据已知的工艺参数来确定真正有效压差,以计算出精确的流通能力。
F L与X T的数值必须在阀型选定之后才能获得,而阀型的选定不仅与流体的性状、压力、温度、腐蚀性等因素有关,并且与流通能力、可调范围、允许压差等参数有关;但就是这些参数必须经计算后才能得到,而往往由于这些参数的限制又必须改选阀型;因此问题的关键就在于要设计出一套合理的方法与步骤,把选型与计算作为一个有机的整体综合起来考虑。
空压气动元件原理选型及应用细节简述 1空压机机型选择排气量是空压机的主要参数之一,选择空压机的气量要和所需的排气量相匹配,如果用气量大而空压机排气量小,风动工具一开动,会造成空压机排气压力的大大降低,而不能驱动风动工具。
当然盲目追求大排气量也是错误的,因为排气量越大压缩机配的电机越大,不但价格高,而且浪费购置资金,使用时也会浪费电力能源。
另外,在选排气量时还要考虑高峰用量和通常用量及低谷用量。
如果低谷用量较大,而通常用量和高峰用量都不大,国外通常的办法是以较小排气量的空压机并联取得较大的排气量,随着用气量增大而逐一开机,这样不但对电网有好处,而且能节约能源。
一般工厂用平均消耗量和为依据求设计容量q2的计算方法q2=σq0k (1+φ1+φ2+φ3)m3/hq2─设计容量m3/hσq0─用气设备或车间平均消耗量总和m3/hk─消耗量不平等系数1.2~1.4φ1─管道漏损系数.当管道全长小于1km时取0.1;小于1.5km时,取0.15;大于2 km时取0.2φ2─用气设备磨损增耗量系数0.15~0.2φ3─未预见的消耗量系数为0.1机械工厂常采用这种计算方法来确定压缩空气站设计容量。
当然以上为参考计算方法,各行业应根据行业的自身特点、传统习惯和经验进行选用。
当净化系统中采用有热或无热再生吸附干燥器时,其设计容量还需分别增加8%~10%或15%~20%再生自耗气量。
1、一般工厂都采用平均消耗量和为依据求设计容量q 2的计算方法2、活塞机淘汰可以根据铭牌气量或者电机的功率并留有15%的余量。
2排气压力的确定因为对风动工具而言其压力余量太小,输气距离稍远一些就不能使用,首先保证使用的最高压力的基础上要充分考虑到气体在管内流动时,在直线管段产生摩擦阻力;在阀门、三通、弯头、变径管等处产生局部阻力,从而导致气体压力损耗。
一段管路长度内的压力降可从表中查取计算得到根据经验总的压力损失在管路长100米内应不超过0.4kg/cm2为宜,如果超过上述数据,就必须增加设计压力2真空阀的分类及标准真空阀是其工作压力低于标准大气压应用于真空系统的阀门。
气动调节阀选型及计算执行器是控制系统的终端控制元件,是重要的环节,气动调节阀在常用的执行器中约占85﹪以上。
控制系统中因气动调节阀造成不能投运或运行不良者有占50﹪-60﹪以上。
其中除提供的工艺参数出入较大,阀制造质量欠佳和使用不当外,选型与计算的方法不妥则是一个相当突出的因素。
因此,如何合理正确地选择和计算气动调节阀就是自控设计中至关重要的问题了。
调节阀按调节仪表的控制信号,直接调节流体的流量,在控制系统中起着十分重要的作用。
要根据使用条件和用途来选择调节阀。
选择调节阀项目有:结构型式、公称通经、压力-温度等级、管道连接、上阀盖型式、流量特性、材料及执行机构等。
深入研究各个项目和它们之间的相互关系,是极其重要的。
选择调节阀必须知道控制系统的各种工艺参数,以及调节仪表、管道连接等基本条件,才能正确地选择调节阀。
下面为一般选用调节阀的基本准则:(图一、图二)调节阀的选择工艺流体条件流体名称、流量、进/出口确认选择条件压力、全开/全关时压差、温度、比重、粘度、泥浆等。
选择品种规格调节仪表条件流量特性、作用型式、调节仪表输出信号等。
写出规格书管道连接条件公称压力、法兰连接型式、材料等。
(图二)选型和计算(定尺寸)是选择一个调节阀的两个重要部分。
它们是不同的,然而又是互相关联的。
以往,各工业部门的自控设计的选阀工作有些基本上没有考虑到它们之间的内在联系。
对国内一般产品来说,用一组工艺参数计算两个不同阀型的流通能力,临界条件下的计算结果最大可相差40%以上。
不同结构的调节阀有其各自的压力恢复特性。
此特性用压力恢复系数F L或最大有效压差比X T表示。
一般的单、双座阀等属于低压力恢复阀,F L和X T较大;蝶阀和球阀等属于高压力恢复阀,F L和X T 较小;偏心旋转阀则介于两者之间。
参数F L和X T的引入有助于在计算中根据已知的工艺参数来确定真正有效压差,以计算出精确的流通能力。
F L和X T的数值必须在阀型选定之后才能获得,而阀型的选定不仅与流体的性状、压力、温度、腐蚀性等因素有关,并且与流通能力、可调范围、允许压差等参数有关;但是这些参数必须经计算后才能得到,而往往由于这些参数的限制又必须改选阀型;因此问题的关键就在于要设计出一套合理的方法和步骤,把选型和计算作为一个有机的整体综合起来考虑。
1、气压传动标准件供应商:日本:SMC(中高端市场)、喜开理(CKD)、小金井(KOGANEI)等;中国:台湾亚德客(AirTAC)、华能、台湾新恭(SHAKO)、气立可(CHELIC)等;德国:费斯托(Festo)(高端市场)美国:博世力士乐(Bosch-Rexroth)、Park等。
英国:诺冠2、典型气动系统的组成:气动系统一般有方向控制阀、气动执行元件、各种气动辅助元件及气源净化元件组成。
3、压缩空气的压强一般为0.5~0.7MPa。
4、工厂内对于耗气量比较大或需要稳定气压的设备一般需要为设备单独添置储气罐。
5、常用的气动元件:1)气源处理组合单元:干燥机、干燥器、防湿气凝结管、空气过滤器、雾分离器、油雾分离器、除臭过滤器、自动排水器、电动式自动排水器、减压阀、过滤减压阀、缓慢启动电磁阀、电气比例阀、增压阀等2)气动控制元件:3通先到电磁阀、3通直动式电磁阀、3通气控阀、5通先导式电磁阀、5通气控阀、2通先导式电磁阀、2通直动式电磁阀、2通气控阀等3)气动执行元件:气动马达、喷枪、微型气缸CJ1、针形气缸CJP2/CJP、标准型气缸CJ2、自由安装型气缸CU、机械接合式无杆气缸MY1、磁偶式无杆气缸CY3B/CY3R、气动滑台MXH、导向轴承双缸气缸MXQ、带导杆气缸MGJ、双联/基本型气缸CXS、旋转夹紧气缸MK、止动气缸RSQ、行程可读出气缸CE1、叶片旋转气缸/齿轮齿条旋转气缸、摆动气缸CRQ2、伸摆气缸MRQ、气爪(平行式、支点式)/阔型气爪等4)电动执行元件5)真空元件:真空发生器、真空负压表、真空吸盘等;6)压力检测元件7)除静电元件8)辅助气动元件:空压机、储气罐、管接头6、熟悉气缸的型号1)(空间布局、动力特性、连接固定方式和配件信息等),熟悉标示和每个字母、数字的含义,并能快速查阅型录获得技术信息。
2)熟悉气缸的动力特性和空间布局。
像定位、夹紧等对于气缸输出力、速度和行程要求不高,或者要求停电不会造成安全事故隐患的场合,可考虑用单作用气缸,其他的情况一般采用双作用气缸;需要大动力时可用串联增压气缸,运动有精度要求时刻用带导杆气缸或滑台气缸。