四年级补充讲义:牛吃草问题(一)
- 格式:doc
- 大小:189.00 KB
- 文档页数:5
6-1-10.牛吃草问题(一)教学目标1.理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2.初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系知识精讲英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.例题精讲模块一、一块地的“牛吃草问题”【例 1】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【巩固】牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.【巩固】一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【例 2】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
牛吃草问题(讲义)一、教学目标1、知识与技能:(1)能够理解牛吃草问题的实质,掌握该类问题的解法。
(2)通过问题的解法,可以根据所给条件图示或思维图,finding the answer。
2、过程与方法:通过引领学生自主探究、合作学习等方式,激发学生的问题意识和探究欲望,培养学生的思维能力和解决问题的能力。
二、教学内容牛吃草问题的讲解三、教学方法1、解释法2、举例法3、归纳法四、教学过程Step1、引入(1)学生在小组中集思广益,思考有没有什么常识可以与牛吃草问题相关联。
比如:牛一定会一口一口地吃草,不会一口吃掉。
(2)老师引入牛吃草问题。
如果有一头牛在一片长满草的牧场上吃草,它平均每天可以吃掉牧场上草的90%。
那么如果这头牛吃了2天,牧场上还剩下多少草?Step2、探究(1)老师让学生分组探究。
思考:如果牛吃了1天,牧场上还剩下多少草?如果牛连续吃了两个周六(即2天),又会吃掉多少?如果吃了3天、4天呢?请你们探究该问题的解法。
(2)学生分享与总结。
学生展示自己的解法,并总结出如下规律:n 天后还剩1 ($ 1 \div 10 $) $\times 10 = 1$2 ($ 1 \div 10 $) $\times 9 = 0.9$3 ($ 1 \div 10 $) $\times 8 = 0.8$……n ($ 1 \div 10 $) $\times (10-n) $Step3、引申(1)如上所述,牧场的草只剩10%。
如果这时再入一只牛来吃草,那么还能支撑多少天?(2)如果现在牛吃1天最多能吃掉30%草,那么还能支撑多少天?Step4、总结回顾笔记,让学生总结解决牛吃草问题的方法。
五、教学总结本节课学习到了牛吃草问题。
引入问题后,老师呈现出其解决方式,学生自主学习和合作学习,掌握相关知识与技能。
通过此类问题的引导,学生可以从一系列看似简单的问题中,慢慢发展出自己的数学思维和解题方法,从而增加解决问题的能力。
牛吃草问题的详细解法一、牛吃草问题基础概念。
1. 问题描述。
- 牛吃草问题又称为消长问题或牛顿问题。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
2. 基本公式。
- 设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、牛吃草问题示例及解析。
1. 题目1。
- 有一片牧场,草每天都在匀速生长。
如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。
问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。
- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。
要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。
- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。
- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。
2. 题目2。
- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。
那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。
- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。
牛吃草问题(一)1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.模块一、一块地的“牛吃草问题”【例 1】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15⨯-⨯÷-=,原有草量为(2715)672-⨯=,可供72181519÷+=(头)牛吃18周【答案】19头牛【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么251015-=天生长的草量为1225241060⨯-⨯=,所以每天生长的草量为60154÷=;原有草量为:()24410200-⨯=.20天里,草场共提供草200420280+⨯=,可以让2802014÷=头牛吃20天.【答案】14头牛【巩固】 牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则 头例题精讲 知识精讲教学目标牛96天可以把草吃完.【考点】牛吃草问题 【难度】3星 【题型】填空【关键词】湖北省,创新杯,对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么每天新生长的草量为()()103060702460243⨯-⨯÷-=,牧场原有草量为10306016003⎛⎫-⨯= ⎪⎝⎭,要吃96天,需要10160096203÷+=(头)牛. 【答案】20头牛【巩固】 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为1个单位,则每天生长的草量为:(509587)(97)22⨯-⨯÷-=,原有草量为:509229252⨯-⨯=,(252226)664+⨯÷=(头)【答案】64头牛【例 2】 青青一牧场,牧草喂牛羊; 放牛二十七,六周全吃光。
专题一:牛吃草问题※.核心公式:草场草量=(牛数-每天长出的草量)×天数这里我们把草场草量称为“原有量”把每天长出的草量称为“日产量”那么牛吃草问题的核心公式为:原有量 =(牛数-日产量)×天数※.解题思路:A.对于简单的牛吃草问题,一般可以根据已知条件,分步骤解答。
首先:求出日产量(每天长出的草量)然后:求出原有量(草场草量)最后:求出题目。
B.对于较为复杂的牛吃草问题,我们将在下面例题中,具体分析。
----------------------------------------------------------------- 例1.牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?分析:这是一道基本的牛吃草问题,我们可以按照思路A解答。
解:设1头牛1天吃的草为1份。
每天长出的草量为:(10×20-15×10)÷(20-10)= 5(份)草场原有的草量为:10×20-5×20 = 100(份)25头牛可以吃的天数:100÷(25-5)= 5(天)答:这片草地可供25头牛吃5天。
课堂练兵:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供几头牛吃5天?例2.由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?分析:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。
但我们可以利用例1的方法,求出每天减少的草量和原有的草量。
解:设1头牛1天吃的草为1份。
每天减少的草量为:(20×5-15×6)÷(6-5)= 10(份)草场原有的草量为:20×5+10×5 = 150(份)设:可供x头牛吃10天?150 = (x+10)×10x = 5答:可供5头牛吃10天。
牛吃草问题教学目的:1、学会在草生长或枯萎时,计算牛吃草的天数或牛的头数。
2、通过吃草的天数和牛的头数,来计算草地的生长或枯萎速度及原有的草量。
3、掌握典型牛吃草问题的求解方法。
4、掌握草地面积变化的牛吃草问题解法。
教学重难点:1、计算草生长速度和原有草量2、归一法解决草地面积变化类牛吃草问题1、牛吃草,看似主角是牛,其实主角是草,草原上的草到了春天,春意盎然,“蹭蹭”的长,长的比牛吃的还快;到了秋天,就算没有牛,草地自己也会慢慢枯萎。
所以草地自身草量的变化非常关键。
草生长情况下吃草天数的计算,最关键的一步是求出“草地每天真正的减少量。
”牛吃草问题,只要抓住草地每天的减少量,其他问题都好办!2、通过吃草的天数和牛的头数,来计算草地的情况,关键还是围绕草地进行分析。
主要计算三个量:①草地在多少天内提供了多少草?②多少是新草?③多少是老草?3、解决典型的牛吃草问题,要紧紧抓牢两个关键的量:①草的生长速度②原有的草量4、解决草地面积变化牛吃草问题,最关键的一步是“归一”。
先把已知条件归为一公顷草地提供草的情况,再通过对比算出一公顷草地的草的生长速度和原有草量。
归一运算的步骤:先算出整块草地在多少天内提供了多少草,再除以草地面积,求出一公顷草地在多少天内提供了多少草。
草量变化时求牛数与天数例题1 1头牛1天吃“1份草”,草地一开始有60份草,每天新生长2份草,问8头牛几天可以吃完整片草地的草?例题2 1头牛1天吃“1份草”,草地一开始有60份草,每天枯萎2份草,问8头牛几天可以吃完整片草地的草?每天减少量:8×1+2=10份60÷10=6天草地6天被吃完!计算草速与原有草量例题3 一片草地8头牛吃10天,4头牛吃18天,你觉得这片草地是在生长还是枯萎呢?如果一头牛一天吃的草量为1份,那这片草地每天枯萎或者减少的草量是多少份?例题4 一片草地8头牛吃10天,6头牛吃15天,如果一头牛一天吃的草量为1份,那这片草地原有多少份草呢?总草量:6×15=90份新草:15×2=30份老草:90-30=60份典型牛吃草问题例题5 一片草地,8头牛吃10天,6头牛吃15天,4头牛吃几天?草地面积变化牛吃草问题例题6 同样一片草地,15头牛20天吃了其中的5公顷,24头牛30天吃了其中的9公顷,40头牛多少天可以吃其中的10公顷?训练1 1头牛1天吃“1份草”,草地开始有60份草,每天新生长2份草,问几头牛5天可以吃完整片草地的草?训练2 有一片牧场,草地上现有20 0份草,草地每天都均匀地生长5份草.若一开始放25头牛,每头牛每天吃1份草,一共可以吃几天?训练3 一片草地8头牛吃10天,6头牛吃15天,你觉得这片草地是在生长还是枯萎呢?如果一头牛一天吃的草量为1份,那这片草地每天枯萎或者减少的草量是多少份?训练4 有一片牧场,每天都在均匀地生长草,每头牛每天吃1份草.如果在牧场上放养14头牛,那么15天能把草吃完;如果只放养19头牛,那么10天能把草吃完.那么每天均匀长几份草?草地一开始原有几份草?训练5 有一片牧场,每天都在均匀地生长草,每头牛每天吃1份草.如果在牧场上放养20头牛,那么10天能把草吃完;如果只放养15头牛,那么15天能把草吃完.如果要想一直有草吃,那么最多放几头牛?(思考:一直有草吃的含义是什么?)训练6 一片面积为7公顷的草地,可供10头牛吃70天。
例1:牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天?分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。
可以吃:72÷6=12天。
例2:一片牧场上长满牧草,如牧草每天都匀速生长。
则牧场可供27头牛吃6天或23头牛吃9天。
问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。
我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。
例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。
如果用12人舀水,3小时舀完。
如果只有5个人舀水,要10小时才能舀完。
现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。
设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。
例4:有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完。
要使牧草永远吃不完,至多可以放牧几头牛?分析:要牧草永远吃不完,就要保证每天最多只吃新增的量,否则一旦超过每天新增的量,吃了原来的量,总有一天会吃完。
小学奥数专题-牛吃草问题【背景介绍】把一些牛放养在一片持续生长的草原上,牛会吃草。
如果牛的数量足够多,草的生长满足不了牛的食量,那么总有一天草会被吃完;如果牛的数量不多,草长得很快,牛有可能永远不会把草吃完。
类似于这样的问题,就是牛吃草问题。
牛吃草问题讲的是某些计划要完成的工作,该工作本身也在变化,而这个变化影响了完成工作的速度。
生活中有很多类似的事情:划船时船身进水,把水排出的速度大于进水速度,一段时间后水会被排完;排水速度没有进水速度快,那么一会儿船里会充满水。
妈妈每月买30瓶牛奶,儿子一天喝一瓶,一个月正好喝完;一天喝2瓶,仅够半个月喝;两天喝一瓶,每个月都会剩下15瓶。
今天我们就讨论一下牛吃草问题,学会的同学做好标记,在之后的课程中,行船问题、自动扶梯问题中也会有同样类型的题目。
【例题1】家里原来有12块糖,妈妈每天还会带回来2块,小明和他的兄弟姐妹每天每人都要吃1块,如果3个兄弟姐妹来吃,可以吃几天?如果4个兄弟姐妹来吃,可以吃几天?【思路分析】3人的时候,3=2+1,其中2人每天吃带回来的糖,剩下那个人去吃家里原有的12块糖,12÷1=12(天),12天后,这个人就没的吃了。
虽然吃带回来的糖的那2个人还可以继续吃,可是因为第3个人没的吃了,有1个人没的吃了就是不够了,那么只够这3个人吃12天。
4人的时候,4=2+2,其中2人每天吃带回来的糖,剩下那2个人去吃家里原有的12块糖,12÷2=6(天),6天后,这2个人就没的吃了。
虽然吃带回来的糖的那2个人还可以继续吃,可是因为第3、第4个人没的吃了,有2个人没的吃了就是不够了,那么只够这4个人吃6天。
【题后分析】3人12天总共吃了3×12=36(块);4人6天总共吃了4×6=24(块)。
为什么3人吃的总量比4人的多36-24=12(块)?因为多了12-6=6(天)。
原有的糖消耗得越慢,去吃妈妈每天带回来的糖的人,吃的天数就越多,也就有了总量的差距。
牛吃草问题基本公式:假设一头牛一天吃草量为“1”(1)草的生长速度=(牛数×较多天数-牛数×较少天数)÷(较多天数-较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
常见变形问题1、条件变形:(1)草减少(2)牛羊混合(3)不现牧场(面积)2、类型变形:(1)抽水问题(2)楼梯问题(3)检票口问题(4)资源开发问题(5)追及问题例1、青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
改养二十三,九周走他方;若养二十一,可作几周粮?练习1.有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天?例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?练习2.由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。
那么,可供11头牛吃几天?例3、一片匀速生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量。
请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?例4、有三块草地,面积分别为5公顷,6公顷和8公顷。
每块地每公顷的草量相同而且长的一样快,第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。
第三块草地可供19头牛吃多少天?变式练习:1、一个水池,池底有泉水不断涌出,用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可把水抽干。
那么用25部这样的抽水机多少小时可以把水抽干?2、自动扶梯以均匀速度由下往上行驶,小明和小丽从扶梯上楼,已知小明每分钟走25级台阶,小丽每分钟走20级台阶,结果小明用了5分钟,小丽用了6分钟分别到达楼上。
小学奥数专题一牛吃草问题牛吃草概念及公式:设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度一、奥数导引例1.一块牧场长满草,每天牧草都均匀生长;这片牧场可供10头牛吃20天,可供15头牛吃10天,那么1可供25头牛吃多少天 2可供多少头牛吃4天例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷20-10=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷25-5=5天;可供25头牛吃5天; 解法二:110-x×20=15-x×10=25-x×210-x×20=15-x×10= -x×4例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛A.50B.46C.38D.35例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量;设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为51-36÷84-54=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头;解法2:利用列方程解问题;二、历年真题三、奥数拔高训练100分1.一个牧场可供58头牛吃7天,或者可供50头牛吃9天;假设草的生长量每天相等,每头牛的吃草量也相等,那么可供多少头牛吃6天10分2.现要将一池塘水全部抽干,但同时又有水流进池塘;若用8台抽水机10天可以抽干;用6台抽水机20天可以抽干;若要5天抽干水,需要多少台同样的抽水机抽水 15分3.一个蓄水池装有9根水管,1根进水管,8根相同的出水管;先放进一些水再排水;排水时进水管不关;如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光;要想在4.5小时内把池内的水全部排光,需同时打开几个出水管 15分4.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站开放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决完毕;1求增加人数的速度;2原来的人数;30分5.有三块草地,面积分别是5、15、24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天 30分1.解析:50×9-58×7÷9-7=22份,58×7-22×7=252份,252+6×22÷6=64头可供64头牛吃6天;2.解析:假设一台抽水机一天抽水1份;6×20-8×10÷20-10=4份,8×10-4×10=40份, 40+4×5÷5=12台,需要12台同样的抽水机抽水;3.解析:假设打开一根出水管每小时可排水“一份”,那么8根出水管开3小时共排出水8×3=24份;5根出水管开6小时共排出水5×6=30份;两种情况比较,可知3小时内进水管放进的水是30-24=6份;进水管每小时放进的水是6÷3=2份;3小时排水24份,3小时进水6份,可见打开排水管前,水池中有水24-6=18份;4.5小时再进水4.5×2=9份,4.5小时排完需打开18+9÷4.5=6根排水管;4.解析:设一个检票口一分钟通过一个人1个检票口30分钟30个人1个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或者2×10-10×0.5=15人5.解析:设每头牛每天的吃草量为1份,则每亩30天的总草量为:10×30÷5=60份;每亩45天的总草量为:28×45÷15=84份,那么每亩每天的新生长草量为84-60÷45-30=1.6份,每亩原有草量为60-1.6×30=12份,那么24亩原有草量为12×24=288份,24亩80天新生长草量为24×1.6×80=3072,24亩80天共有草量3072+288=3360,可供牛数为3360÷80=42头;例 1 一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天例 22008年“陈省身杯”国际青少年五年级数学邀请赛有一个水池,池底存了一些水,并且还有泉水不断涌出;为了将水池里的水抽干,原计划调来8台抽水机同时工作;但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时;工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时;这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机;例3 甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.巩固小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.例 4 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽巩固现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间。
牛吃草问题(一)
例1 牧场上长满牧草,每天匀速生长,这片牧场可供10头牛吃20天,或者可供15头牛
吃10天。
问这个牧场供25头牛可吃几天?
例2 牧场上一片青草,每天生长速度相同,可供27头牛吃6天,或供69只羊吃9天,如果1头
牛的吃草量等于3只羊的吃草量,那么这片青草可供11头牛和30只羊吃几天?
例3 有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19
人去割草,则24天就能割完。
如果需要6天割完,需要派多少人去割草?
例4 由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。
经过计算,牧场上的草可
供20头牛吃5天,或者供16头牛吃6天,那么这片牧场上的草可供11头牛吃几天?
例5 由于天气逐渐冷起来,牧场上的草以固定速度在减少.已知牧场上的草可供33头牛吃5天或可供24头牛吃6天.照此计算,这个牧场可供多少头牛吃10天?
例6 一片草地,有15头牛吃草,8天可以把草全部吃完。
如果起初这15头牛吃了2天后,又来了2头牛,则总共7天就可以把草吃完。
如果起初这15头牛吃了2天后,又来了5头牛,则总共多少天可以把草吃完?
例7 有三个牧场长满草,第一牧场4公顷,可供24头牛吃6周;第二牧场8公顷,可供36头牛吃12周;第三牧场10公顷,可供50头牛吃几周?(每个牧场每公顷牧草数量相同,草都是匀速生长)
例8 22头牛吃33亩草地上的草,54天可以吃完;17头牛吃28亩同样的的草地上的草,84天可吃完。
问:同样的牧草40亩可供多少头牛食用24天?。
小学数学牛吃草问题知识点总结牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)十(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5 份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3 份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120 份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
四年级奥数-牛吃草问题例题讲解work Information Technology Company.2020YEAR例1:牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。
可以吃:72÷6=12天。
例2:一片牧场上长满牧草,如牧草每天都匀速生长。
则牧场可供27头牛吃6天或23头牛吃9天。
问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。
我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。
例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。
如果用12人舀水,3小时舀完。
如果只有5个人舀水,要10小时才能舀完。
现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。
设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。
第1讲牛吃草问题课堂例题与练习例题1有一片草地上原有300千克草,这片草每天长10千克,每头牛每天吃5千克草,问6头牛几天会把这片草地吃完?例题2有一片匀速生长的草地,可供10头牛20天吃完,或者15头牛10天吃完。
那么这片草地每天长出的草可以提供几头牛吃1天。
练习2一个牧场的草每天都在均匀的生长。
如果在牧场上放养24头牛,6天吃完,如果放养21头牛,8天吃完。
请问(1)要使草永远吃不完,最多可以放养多少头牛?(2)如果放养36头牛,多少天可以把草吃完?例题3有一片草场,草每天都在均匀生长。
如果在这片草场上放养20头牛和24只羊,那么18天可以吃完。
如果在这片草场上放养15头牛和54只羊,那么15天就把草吃完。
已知一头牛每天吃的草量相当于3只羊每天吃的草量。
问如果在这片草地上放养12头牛和18只羊可以吃几天。
练习3有一片均匀生长的草地可供18头牛吃40天,或者12头牛加上36只羊吃25天。
1头牛每天的食草量与3只羊的每天的食草量相同。
问这片草地可供17头牛加上几只羊吃16天。
例题4一片草地,草每天都在均匀生长。
最初由15头牛吃草,8天可以把草全部吃完。
如果起初这15头牛吃了2天后,又来了2头牛,则总共7天就可以把草吃完。
如果起初这15头牛吃了2天后,又来了5头牛,则总共需要多少天可以把草吃完?练习4有一片草地,草每天都在均匀生长。
如果有9头牛来吃,那么12天可以把草吃完;如果有8头牛来吃,那么16天可以把草吃完。
现在有3头牛先吃了10天,然后又来了几头牛,结果又用了4天就把草吃完了,那么后来又来了多少头牛?例题5进入冬季后,有一片牧场的草开始枯萎,因此草会均匀的减少。
现在开始在这片牧场上放羊,如果放38只羊,需要25天把草吃完;如果放30只羊,需要30天把草吃完。
如果放20只羊,这片牧场可以吃多少天?练习5进入冬季,有一片牧场的草开始枯萎,因此草会均匀的减少。
若在这儿放牛,草地上的草可以供32头牛吃24天,或者供27头牛吃28天。
牛吃草问题(一)
英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:
①草的每天生长量不变;
②每头牛每天的食草量不变;
③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值
④新生的草量=每天生长量⨯天数.
同一片牧场中的“牛吃草”问题,一般的解法可总结为:
⑴设定1头牛1天吃草量为“1”;
⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);
⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;
⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);
⑸牛的头数=原来的草量÷吃的天数+草的生长速度.
“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.
一、例题选讲:
【例1】青青一牧场,牧草喂牛羊;
放牛二十七,六周全吃光。
改养廿三只,九周走他方;
若养二十一,可作几周粮?
(注:“廿”的读音与“念”相同。
“廿”即二十之意。
)
【解说】题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)
【解析】设1头牛1天的吃草量为“1”,27头牛吃6周共吃了276162
⨯=份;23头牛吃9周共吃了
-=份草,这45份草是牧场的草⨯=份.第二种吃法比第一种吃法多吃了20716245
239207
÷=,那么原有草量为:963
-=周生长出来的,所以每周生长的草量为45315
-⨯=.
16261572
供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要72612
÷=(周)可将原有牧草吃完,即它可供21头牛吃12周.
【例2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?
【解析】设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15
⨯-⨯÷-=,原有草量为
÷+=(头)牛吃18周
-⨯=,可供72181519
(2715)672
【例 3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【例 4】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?
【解析】设1头牛1天的吃草量为“1”,651
⨯-⨯=,原有草量为:
-=天自然减少的草量为2051664
()
+⨯=.
2045120
若有11头牛来吃草,每天草减少11415
÷=(天).
+=;所以可供11头牛吃120158
【例 5】一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?
【解析】设1头牛1天的吃草量为“1”,由于一头牛一天吃草量等于5只羊一天的吃草量,所以100只羊吃12天相当于20头牛吃12天.那么每天生长的草量为()()
⨯-⨯÷-=,
16202012201210
原有草量为:()
-⨯=.
161020120
10头牛和75只羊1天一起吃的草量,相当于25头牛一天吃的草量;25头牛中,若有10头牛去吃每天生长的草,那么剩下的15头牛需要120158
÷=天可以把原有草量吃完,即这块草地可供10头牛和75只羊一起吃8天.
【例 6】有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生
长)?
【解析】设1头牛1天的吃草量为“1”,那么每天生长的草量为()()
⨯-⨯÷-=,原有
1730192430249草量为:()
-⨯=.
17930240
现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完,如果不卖掉这4头牛,那么原有草量需增加428
⨯=才能恰好供这些牛吃8天,所以这些牛的头数为()
+÷+=(头).
24088940
【例 7】一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的
吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?
【解析】设1匹马1天吃草量为“1”,根据题意,有:
15天马和牛吃草量=原有草量15
+天新生长草量……⑴
20天马和羊吃草量=原有草量20
+天新生长草量……⑵
30天牛和羊(等于马)吃草量=原有草量30
+天新生长草量……⑶
由(1)2(3)
÷;
⨯-可得:30天牛吃草量=原有草量,所以:牛每天吃草量=原有草量30由⑶可知,30天羊吃草量30
=天新生长草量,所以:羊每天吃草量=每天新生长草量;设马每天吃的草为3份
将上述结果带入⑵得:原有草量60
=,所以牛每天吃草量2
=.
这样如果同时放牧牛、羊、马,可以让羊去吃新生长的草,牛和马吃原有的草,可以吃:()
÷+=(天).
602312
二、练习及作业
1-①牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?
1-②仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的存货若用1辆汽车运则需要多少天运完?
2-①有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?
2-②(2007年湖北省“创新杯”)
牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.
2-③一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?
2-④林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)
2-⑤一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?
3、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可
供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?
4、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可
供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?
5-①(2008年希望杯六年级二试试题)
有一片草场,草每天的生长速度相同。
若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。
那么,17头牛和20只羊多少天可将草吃完?
5-②一片牧草,每天生长的速度相同。
现在这片牧草可供20头牛吃12天,或可供60只羊吃24天。
如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?
5-③一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100
只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃
多少天?
6、一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?
7、现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于
是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?。