趣味数学牛吃草问题(经典讲义)
- 格式:ppt
- 大小:1.29 MB
- 文档页数:40
牛吃草问题(讲义)一、教学目标1、知识与技能:(1)能够理解牛吃草问题的实质,掌握该类问题的解法。
(2)通过问题的解法,可以根据所给条件图示或思维图,finding the answer。
2、过程与方法:通过引领学生自主探究、合作学习等方式,激发学生的问题意识和探究欲望,培养学生的思维能力和解决问题的能力。
二、教学内容牛吃草问题的讲解三、教学方法1、解释法2、举例法3、归纳法四、教学过程Step1、引入(1)学生在小组中集思广益,思考有没有什么常识可以与牛吃草问题相关联。
比如:牛一定会一口一口地吃草,不会一口吃掉。
(2)老师引入牛吃草问题。
如果有一头牛在一片长满草的牧场上吃草,它平均每天可以吃掉牧场上草的90%。
那么如果这头牛吃了2天,牧场上还剩下多少草?Step2、探究(1)老师让学生分组探究。
思考:如果牛吃了1天,牧场上还剩下多少草?如果牛连续吃了两个周六(即2天),又会吃掉多少?如果吃了3天、4天呢?请你们探究该问题的解法。
(2)学生分享与总结。
学生展示自己的解法,并总结出如下规律:n 天后还剩1 ($ 1 \div 10 $) $\times 10 = 1$2 ($ 1 \div 10 $) $\times 9 = 0.9$3 ($ 1 \div 10 $) $\times 8 = 0.8$……n ($ 1 \div 10 $) $\times (10-n) $Step3、引申(1)如上所述,牧场的草只剩10%。
如果这时再入一只牛来吃草,那么还能支撑多少天?(2)如果现在牛吃1天最多能吃掉30%草,那么还能支撑多少天?Step4、总结回顾笔记,让学生总结解决牛吃草问题的方法。
五、教学总结本节课学习到了牛吃草问题。
引入问题后,老师呈现出其解决方式,学生自主学习和合作学习,掌握相关知识与技能。
通过此类问题的引导,学生可以从一系列看似简单的问题中,慢慢发展出自己的数学思维和解题方法,从而增加解决问题的能力。
小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?(200-150)÷(20-10)解:假设1头牛1天吃的草的数量是1份草每天的生长量:=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?(180-150)÷(20-10)解:假设1头牛1天吃的草的数量是1份草每天的生长量:=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
有关牛吃草的数学问题级解法1、牧场上有一片青草,每天都生长的一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛可以吃10天,如果供给25头牛可以吃几天?可以供给多少头牛吃5天? 先算10头牛吃22天比16头牛吃10天多吃多少。
10×22-16×10=60多吃的部分就是牧场在(22-10)天内长出的草。
60÷(22-10)=5(头)也就是说牧场每天新长出来的草够5头牛吃一天。
再算牧场原来的草够多少头牛吃一天(10-5)×22=110(头)或者(16-5)×10=110(头)110÷(25-5)=5.5(天)110÷5+5=27(头)答:如果供给25头牛可以吃5.5天。
可以供给27头牛吃5天。
2、甲,乙,丙三块草地草长得一样密,一样快,甲地面积为310公顷,可供12头牛吃4周,乙地面积为10公顷,可供21头牛吃9周,,丙地24公顷,丙地可供多少头牛吃18周?丙地可以供24头牛 吃多少周?乙地面积为甲地面积3倍所以10公顷土地可以供给(12×3)头牛吃4周。
(21×9-(12×3)×4)÷(9-4)=9(头)10公顷草地每周生长的草可供9头牛吃一周。
(21-9)×9=108(头)10公顷原有的草可供108头牛吃一周9÷10×24=21.6(头)24公顷每周生长的草可供21.6头牛吃一周。
108÷10×24=259.2(头)259.2÷18+21.6=36(头)259.2÷(24-21.6)=108(周)答:丙地可供36头牛吃18周,可供24头牛吃108周。
3、一片牧场,草每天生长的速度相同,现在,这片牧草可供20头牛吃12天,或60只羊吃24天.如果1头牛每天吃的草量等于4只羊每天吃的草量,那么,12头牛于88只羊一起可以吃多少天?可供15头牛,多少只羊吃10天?可供40头羊,多少头牛吃6天? 60÷4=15(头)(15×24-20×12)÷(24-12)=10(头)(20-10)×12=120(头)12+88÷4=34(头)120÷(34-10)=5(天)120÷10+10=22(头)(22-15)×4=28(头)120÷6+10=30(头)30-40÷4=20(头)答:可供12头牛88只羊吃5天。
小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的;典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天;由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化;小升初冲刺第2讲牛吃草问题基本公式:1 设定一头牛一天吃草量为“1”2草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;3原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4吃的天数=原有草量÷牛头数-草的生长速度;5牛头数=原有草量÷吃的天数+草的生长速度;例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天;问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:200-150÷20-10=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷25-5=5天自主训练牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:180-150÷20-10=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷18-3=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少;已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天;照此计算,可供多少头牛吃10天解:假设1头牛1天吃的草的数量是1份草每天的减少量:100-90÷6-5=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量 150-10×10÷10=5头自主训练由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天解:假设1头牛1天吃的草的数量是1份草每天的减少量:240-225÷9-8=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷21+15=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼;已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上;问:该扶梯共有多少级男孩:20×5 =100级自动扶梯的级数-5分钟减少的级数女孩;15×6=90级自动扶梯的级数-6分钟减少的级数每分钟减少的级数= 20×5-15×6 ÷6-5=10级自动扶梯的级数= 20×5+5×10=150级自主训练两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒;问该扶梯共有多少级3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:2×300-3×100÷300-100=级自动扶梯级数= 3×100-100×=150级1. 有一片牧场,操每天都在匀速生长每天的增长量相等,如果放牧24头牛,则6天吃完草,如果放牧21头牛,则8天吃完草,设每头牛每天的吃草量相等,问:要使草永远吃不完,最多只能放牧几头牛假设1头1天吃1个单位246=144218=168168-144=24每天长的草可供24/2=12头牛吃最多只能放12头牛2,有一片草地,草每天生长的速度相同;这片草地可供5头牛吃40天,或6供头牛吃30天;如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天假设1头1天吃1个单位540=200;630=180200-180=20每天长的草:20/40-30=2原有草:200-240=120430=120 ,302=60 60/4=15天3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为了人类不断繁衍,那么地球最多可以养活多少亿人假设1亿人头1天吃1个单位11090=9900;90210=1890018900-9900=90009000/210-90=754,一游乐场在开门前有100人排队等候,开门后每分钟来的游客是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口处20分钟就没人排队,现开放4个入口处,那么开门后多少分钟后没人排队22010=400400-100=300300/20=15100+154=160160/410=41因为草量=原有草量+新长出的草量,而且草量是均匀增长的;所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量, 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度较多天数时的时间;同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度较少天数时的时间;两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了;2牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草;所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量;当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了;牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的;典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天;由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化;解决牛吃草问题常用到四个基本公式,分别是︰1 设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度;这四个公式是解决消长问题的基础;由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量;牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的;正是由于这个不变量,才能够导出上面的四个基本公式;牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草;由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天;解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题;这类问题的基本数量关系是:1.牛的头数×吃草较多的天数-牛头数×吃草较少的天数÷吃的较多的天数-吃的较少的天数=草地每天新长草的量;2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草;解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些;“牛吃草”问题分析华图公务员考试研究中心数量关系资料分析教研室研究员姚璐华图名师姚璐例1有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天根据核心公式代入200-150/20-10=5 1020-520=100 100/25-5=5天璐例2有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天,根据核心公式代入20×10-15×10=5 10×20-5×20=100 100÷4+5=30头华图名师姚璐例3如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛华图名师姚璐答案D华图名师姚璐解析设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y ,24天内吃尽40公亩牧场的草,需要Z头牛根据核心公式:,代入,因此,选择D华图名师姚璐注释这里面牧场的面积发生变化,所以每天长出的草量不再是常量;下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用;华图名师姚璐例4有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用1 6分钟排完;问如果计划用10分钟将水排完,需要多少台抽水机广东2006上台台台台华图名师姚璐答案B华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机有恒等式:解,得,代入恒等式华图名师姚璐例5有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时北京社招2006华图名师姚璐答案C华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量,共需Y小时有恒等式:解,得,代入恒等式华图名师姚璐例6林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光假定野果生长的速度不变浙江2007周周周周华图名师姚璐答案C华图名师姚璐解析设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完有恒等式:解,得,代入恒等式华图名师姚璐例7物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款;某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了浙江2006小时小时小时小时华图名师姚璐答案D华图名师姚璐解析设共需X小时就无人排队了;例题:1、旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要1 0分钟就把所有乘客OK了求增加人数的速度还有原来的人数设一个检票口一分钟一个人1个检票口30分钟30个人2个检票口10分钟20个人30-20÷30-10=个人原有1×30-30×=15人或2×10-10×=15人2、有三块草地,面积分别是5,15,24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天这是一道牛吃草问题,是比较复杂的牛吃草问题;把每头牛每天吃的草看作1份;因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=份所以,每亩原有草量60-30×=12份第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛所以,一共需要+=42头牛来吃;两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:1030/5=60;每亩45天的总草量为:2845/15=84那么每亩每天的新生长草量为84-60/45-30=每亩原有草量为30=12,那么24亩原有草量为1224=288,24亩80天新长草量为2480=3072,2 4亩80天共有草量3072+288=3360,所有3360/80=42头解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15亩,可以推出15亩每天新长草量28×45-30×30/45-30=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24头24亩需牛:180/80+2424/15=42头。
小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的;典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天;由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化;小升初冲刺第2讲牛吃草问题基本公式:1 设定一头牛一天吃草量为“1”2草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;3原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4吃的天数=原有草量÷牛头数-草的生长速度;5牛头数=原有草量÷吃的天数+草的生长速度;例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天;问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:200-150÷20-10=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷25-5=5天自主训练牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:180-150÷20-10=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷18-3=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少;已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天;照此计算,可供多少头牛吃10天解:假设1头牛1天吃的草的数量是1份草每天的减少量:100-90÷6-5=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量 150-10×10÷10=5头自主训练由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天解:假设1头牛1天吃的草的数量是1份草每天的减少量:240-225÷9-8=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷21+15=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼;已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上;问:该扶梯共有多少级男孩:20×5 =100级自动扶梯的级数-5分钟减少的级数女孩;15×6=90级自动扶梯的级数-6分钟减少的级数每分钟减少的级数= 20×5-15×6 ÷6-5=10级自动扶梯的级数= 20×5+5×10=150级自主训练两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒;问该扶梯共有多少级3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:2×300-3×100÷300-100=级自动扶梯级数= 3×100-100×=150级1. 有一片牧场,操每天都在匀速生长每天的增长量相等,如果放牧24头牛,则6天吃完草,如果放牧21头牛,则8天吃完草,设每头牛每天的吃草量相等,问:要使草永远吃不完,最多只能放牧几头牛假设1头1天吃1个单位246=144218=168168-144=24每天长的草可供24/2=12头牛吃最多只能放12头牛2,有一片草地,草每天生长的速度相同;这片草地可供5头牛吃40天,或6供头牛吃30天;如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天假设1头1天吃1个单位540=200;630=180200-180=20每天长的草:20/40-30=2原有草:200-240=120430=120 ,302=60 60/4=15天3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为了人类不断繁衍,那么地球最多可以养活多少亿人假设1亿人头1天吃1个单位11090=9900;90210=1890018900-9900=90009000/210-90=754,一游乐场在开门前有100人排队等候,开门后每分钟来的游客是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口处20分钟就没人排队,现开放4个入口处,那么开门后多少分钟后没人排队22010=400400-100=300300/20=15100+154=160160/410=41因为草量=原有草量+新长出的草量,而且草量是均匀增长的;所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量, 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度较多天数时的时间;同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度较少天数时的时间;两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了;2牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草;所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量;当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了;牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的;典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天;由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化;解决牛吃草问题常用到四个基本公式,分别是︰1 设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度;这四个公式是解决消长问题的基础;由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量;牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的;正是由于这个不变量,才能够导出上面的四个基本公式;牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草;由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天;解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题;这类问题的基本数量关系是:1.牛的头数×吃草较多的天数-牛头数×吃草较少的天数÷吃的较多的天数-吃的较少的天数=草地每天新长草的量;2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草;解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些;“牛吃草”问题分析华图公务员考试研究中心数量关系资料分析教研室研究员姚璐华图名师姚璐例1有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天根据核心公式代入200-150/20-10=5 1020-520=100 100/25-5=5天璐例2有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天,根据核心公式代入20×10-15×10=5 10×20-5×20=100 100÷4+5=30头华图名师姚璐例3如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛华图名师姚璐答案D华图名师姚璐解析设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y ,24天内吃尽40公亩牧场的草,需要Z头牛根据核心公式:,代入,因此,选择D华图名师姚璐注释这里面牧场的面积发生变化,所以每天长出的草量不再是常量;下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用;华图名师姚璐例4有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用1 6分钟排完;问如果计划用10分钟将水排完,需要多少台抽水机广东2006上台台台台华图名师姚璐答案B华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机有恒等式:解,得,代入恒等式华图名师姚璐例5有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时北京社招2006华图名师姚璐答案C华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量,共需Y小时有恒等式:解,得,代入恒等式华图名师姚璐例6林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光假定野果生长的速度不变浙江2007周周周周华图名师姚璐答案C华图名师姚璐解析设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完有恒等式:解,得,代入恒等式华图名师姚璐例7物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款;某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了浙江2006小时小时小时小时华图名师姚璐答案D华图名师姚璐解析设共需X小时就无人排队了;例题:1、旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要1 0分钟就把所有乘客OK了求增加人数的速度还有原来的人数设一个检票口一分钟一个人1个检票口30分钟30个人2个检票口10分钟20个人30-20÷30-10=个人原有1×30-30×=15人或2×10-10×=15人2、有三块草地,面积分别是5,15,24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天这是一道牛吃草问题,是比较复杂的牛吃草问题;把每头牛每天吃的草看作1份;因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=份所以,每亩原有草量60-30×=12份第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛所以,一共需要+=42头牛来吃;两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:1030/5=60;每亩45天的总草量为:2845/15=84那么每亩每天的新生长草量为84-60/45-30=每亩原有草量为30=12,那么24亩原有草量为1224=288,24亩80天新长草量为2480=3072,2 4亩80天共有草量3072+288=3360,所有3360/80=42头解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15亩,可以推出15亩每天新长草量28×45-30×30/45-30=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24头24亩需牛:180/80+2424/15=42头。
牛吃草问题是一类经典的奥数题,它涉及到速度、时间和数量等多个变量。
下面我将通过一道例题来详细讲解这类问题的解法。
【例题】
一个牧场上的青草每天都匀速生长。
这片青草可供27头牛吃6周,或供23头牛吃9周。
那么这片青草可供21头牛吃几周?
【分析】
这类问题可以通过设定一个单位来表示每天草的增长量。
设每头牛每周吃的草量为1单位,那么27头牛6周吃的草量就是27×6=162单位。
同样地,23头牛9周吃的草量是23×9=207单位。
由于草是匀速生长的,所以我们可以假设每天草的增长量为x单位。
那么6周后的草量就是162+6x单位,9周后的草量就是207+9x 单位。
由于草量是一样的,所以我们可以得到方程:162+6x=207+9x。
解这个方程,我们可以得到x=15,也就是说每天草的增长量是15单位。
那么,初始的草量就是162-6×15=72单位。
现在,我们要计算21头牛可以吃几周。
设可以吃y周,那么根据题意,每周21头牛吃的草量是21y单位,同时草的增长量是15y 单位。
所以,72+15y=21y,解这个方程,我们可以得到y=12。
【答案】
所以,这片青草可供21头牛吃12周。
【总结】
牛吃草问题的关键在于理解草的增长量和牛吃草的速度。
通过设定一个单位来表示每天的草的增长量,我们可以将问题转化为一个关于速度、时间和数量的方程问题。
通过解这个方程,我们可以得到草的增长量和初始的草量,进而计算出牛可以吃的时间。
牛吃草问题详解牛吃草问题学习资料。
一、基本公式。
1. 设定一头牛一天吃草量为“1”。
2. 草的生长速度=(对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)。
3. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
4. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)。
5. 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、例题解析。
(一)基础题型。
例1。
有一片牧场,草每天都在匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。
设每头牛每天吃草的量是相等的,问:如果放牧16头牛,几天可以吃完牧草?要使牧草永远吃不完,最多放牧多少头牛?解析:1. 首先求草的生长速度:- 设每头牛每天吃草量为1份。
- 24头牛6天的吃草量为24×6 = 144份。
- 21头牛8天的吃草量为21×8=168份。
- 草的生长速度(168 - 144)÷(8 - 6)=12份/天。
2. 然后求原有草量:- 原有草量=24×6-12×6 = 72份。
3. 计算16头牛吃完牧草的天数:- 吃的天数=72÷(16 - 12)=18天。
4. 要使牧草永远吃不完,那么牛吃草的速度最多等于草生长的速度,所以最多放牧12头牛。
例2。
牧场上长满牧草,每天牧草都匀速生长。
这片牧场可供10头牛吃20天,可供15头牛吃10天。
供25头牛可吃几天?解析:1. 求草的生长速度:- 设每头牛每天吃草量为1份。
- 10头牛20天吃草量10×20 = 200份。
- 15头牛10天吃草量15×10 = 150份。
- 草的生长速度(200 - 150)÷(20 - 10)=5份/天。
2. 求原有草量:- 原有草量=10×20 - 5×20=100份。
趣味数学牛吃草问题(经典优质课件一、教学内容本节课我们将探讨教材第四章“趣味数学”中的牛吃草问题。
这部分内容详细介绍了牛吃草问题的起源、解题思路以及在实际生活中的应用。
具体内容包括:理解牛吃草问题的背景,掌握其数学模型,学会运用数学方法解决类似问题。
二、教学目标1. 理解牛吃草问题的实质,培养学生运用数学知识解决实际问题的能力。
2. 掌握牛吃草问题的解题方法,提高学生的逻辑思维和数学建模能力。
3. 培养学生合作交流、共同探讨的学习习惯,激发学生学习数学的兴趣。
三、教学难点与重点教学难点:理解牛吃草问题的数学模型,运用数学方法解决实际问题。
教学重点:掌握牛吃草问题的解题思路,培养学生的逻辑思维能力和数学建模能力。
四、教具与学具准备教具:PPT、黑板、粉笔、直尺。
学具:练习本、笔、计算器。
五、教学过程1. 实践情景引入(5分钟)通过展示一组牛吃草的图片,引发学生对牛吃草问题的兴趣,进而导入本节课的内容。
2. 牛吃草问题讲解(10分钟)(1)介绍牛吃草问题的起源,让学生了解其背景。
(2)讲解牛吃草问题的数学模型,引导学生运用数学知识解决问题。
3. 例题讲解(15分钟)以一道经典牛吃草问题为例,详细讲解解题思路和步骤。
例题:有一片草地,每天长出的草量是固定的,一头牛每天吃草量也是固定的。
问:多少头牛可以在一定时间内吃完这片草地?4. 随堂练习(10分钟)让学生独立完成一道牛吃草问题的练习题,巩固所学知识。
练习题:有一片草地,每天长出的草量是30千克,一头牛每天吃草量是5千克。
问:10天内需要多少头牛才能吃完这片草地?6. 学生展示与讨论(15分钟)让学生分组讨论,共同解决一道更具挑战性的牛吃草问题,并展示解题过程。
7. 课堂小结(5分钟)对本节课所学内容进行回顾,强调牛吃草问题的解题思路和数学建模方法。
六、板书设计1. 牛吃草问题数学模型:草地草量 = 每天长草量× 时间每头牛每天吃草量× 牛的数量2. 解题步骤:(1)确定草地草量、每天长草量、每头牛每天吃草量。
(1) 英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.(2) “牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.(3) 解“牛吃草”问题的主要依据:草的每天生长量不变; 每头牛每天的食草量不变;草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值 新生的草量=每天生长量⨯天数.(4) 同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数; ⑷吃的天数=原来的草量÷(牛的头数-草的生长速度); ⑸牛的头数=原来的草量÷吃的天数+草的生长速度.(5) “牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.(1) 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的对比的解题思路. (2) 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系重难点知识框架牛吃草问题一、 一块草地的牛吃草【例 1】 由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【巩固】 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?二、 牛羊一起吃草的“牛吃草问题”【例 2】 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【巩固】 现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?例题精讲三、“牛”吃草问题的变例【例3】一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?【巩固】北京密云水库建有10个泄洪洞,现在水库的水位已经超过安全线,并且水量还在以一个不变的速度增加,为了防洪,需要调节泄洪的速度,假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30个小时以后水位降至安全线;若同时打开两个泄洪闸,10个小时后水位降至安全线.根据抗洪形势,需要用2个小时使水位降至安全线以下,则至少需要同时打开泄洪闸的数目为多少个?【例 4】画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队;如果开5个入场口,8点45分就没有人排队。
第一讲 牛吃草问题---韩克磊老师【知识点总结】 大前提:设每头牛(单位动物)每天(周、小时,单位时间)吃“1”份草。
一、均匀生长型草场1、新草量:(多天×头数1-少天×头数2)÷(多天-少天)——生长型草长,时间越长,吃的草就越多。
2、原草量:天数×头数-天数×新草=天数×(头数-新草)——两组任意一组。
3、问天数:原草÷(头数-新草)——牛分成两部分,一部分吃新草,一部分吃原草,且吃新草的牛头数等于新草量。
问牛数:(原草+新草×天数)÷天数=原草÷天数+新草——同样是先算吃原草的牛,再加上专门吃新草的牛。
4、题外话:以上思路,都可通过画线段图解释,形象直观。
二、均匀减少型草场1、死草量:(少天×头数1-多天×头数2)÷(多天-少天)——减少型草长,时间越长,死的草越多,吃的草就越少。
2、原草量:天数×头数+天数×死草=天数×(头数+死草)——两组任意一组。
3、问天数:原草÷(头数+死草)——可将死草量视作隐身且吃草的牛即可。
问牛数:(原草-死草×天数)÷天数=原草÷天数-死草——同样是先算总牛数,再减去被当作“隐身牛”的死草。
4、题外话:以上思路,同样都可通过画线段图解释,一样形象直观。
三、变形牛吃草——各种牛吃各种草1、重点(变形):找准什么是牛,什么是草。
2、难点(转化):不同动物,统一动物(速度)——根据“食量”倍数转化。
不同草场,统一草场(路程)——根据“归一思想”转化。
动物死了,救活动物(变速)——死牛变活多吃的草要补上。
新来动物,赶走动物(变速)——赶走的牛吃掉的草要去掉。
3、常见题型:进、出水问题;排队问题;死牛多牛问题;牛羊同吃草问题;行程……以上内容,均为官方内容,韩老师倾情手打~************************************我是华丽丽的分割线************************************** 【题外话一】韩老师碎碎念时间又到了~~~周树人先生说过,世界上,有那么一些人活着,但是跟死了一样;有那么一些人死了,但是不让我们活着的人好好活——比如拉格朗日,比如阿基米德,比如爱因斯坦,比如莱布尼茨——再比如,牛顿。
牛吃草问题(一)“牛吃草”问题又称牛顿问题,是因牛顿提出而得名的。
解答这类题的关键是要想办法从变化中找到不变的量。
牧场上原有的草是不变的,新长出的草虽然在变化,但因为是匀速生长,所以每天新长出的草是不变的。
正确计算草地上原有的草及每天新长出的草,问题就容易解决了。
例1:一片草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9 周,那么,这片草地可供21头牛吃几周?分析:这片草地上的草的数量每天都在变化,但是原来的草的数量是不变的。
牛在一段时间内吃的总草量=原有的草的数量+这段时间内新长出的草的数量新长出的草是匀速生长的,因而这片草地每天新长出的草的数量也是不变的假设1头牛一周吃的草的数量为1份,那么27头牛6 周需要吃草(份),此时新长出的草与原有的草均被吃完;23头牛9周需吃草(份),此时新长出的草与原有的草也均被吃完。
所以,162份是与的总和,207份是与的总和。
因此每周新长出的草的份数为( 份),原有的草的数量为(份)或(份)。
这片草地每周新长出的15 份草,可以安排15 头牛专吃新长出来的草,这样相当于没有新的草长出。
于是这片草地可供21 头牛吃(周)。
同样是这片草地,可供24头牛吃几周?例2:一片草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9 周,那么,这片草地可供多少头牛吃12周?同样是这片草地,可供多少头牛吃8周?方法分享:每天长草量=(对应的牛的数量×吃的较多天数一对应的牛的数量×吃的较少天数)÷(吃的较多天数一吃的较少天数)原有草量=(牛的数量一每天长草量)x可吃天数可吃天数=原有草量÷(牛的数量一每天长草量)牛的数量=原有草量÷可吃天数+每天长草量作业:1.一片草地,每天都匀速长出青草,如果这片青草可供24头牛吃6天或可供20头牛吃10天。
那么,可供19头牛吃多少天?2.一片草地,每天都匀速长出青草,如果这片青草可供24头牛吃6天或可供20头牛吃10天。
牛吃草问题讲义牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。
一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。
典例评析例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天?例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。
请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天?【分析】这片牧场上的牧草的数量每天在变化。
解题的关键应找到不变量——即原来的牧草数量。
因为总草量可以分成两部分:原有的草与新长出的草。
新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。