学大精品讲义六上数学(含答案)第九讲 牛吃草问题
- 格式:docx
- 大小:108.95 KB
- 文档页数:29
牛吃草六年级奥数题及答案
牛吃草:(中等难度)
一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?
牛吃草答案:
这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进展分析。
如果设每个人每小时的淘水量为"1个单位".那么船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.
船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
如果这些水(24个单位)要2小时淘完,那么需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需
12+2=14(人)。
六年级奥数讲义牛吃草问题TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】第三十九周“牛吃草”问题专题简析:牛吃草问题是牛顿问题,因牛顿提出而得名的。
“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3×10÷6=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。
因为草每天走在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。
解答这类题的关键是要想办法从变化中找到不变的量。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。
正确计算草地上原有的草及每天长出的草,问题就容易解决了。
例1:一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?这片草地上的草的数量每天都在变化,解题的关键应找到不变量——即原来的草的数量。
因为总草量可以分成两部分:原有的草与新长出的草。
新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的。
假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份),此时新草与原有的草均被吃完;23头牛9周需吃23×9=207(份),此时新草与原有的草也均被吃完。
而162份是原有的草的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)÷(9-6)=15(份),所以,原有草的数量为:162-15×6=72(份)。
这片草地每周新长草15份相当于可安排15头牛专吃新长出来的草,于是这片草地可供21 头牛吃72÷(21-15)=12(周)练习11、一片草地,每天都匀速长出青草,如果可供24头牛吃6天,20头牛吃10天,那么可供19头牛吃几天?2、牧场上一片草地,每天牧草都匀速生长,这片牧草可供10头牛吃20天,或者可供15头牛吃10天,问可供25头牛吃几天?3、牧场上的青草每天都在匀速生长,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?例2:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
牛吃草问题牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度.牛吃草问题的关键是求出工作总量的变化率.下面给出几例牛吃草及其相关问题.1. 草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?(这类问题由牛顿最先提出,所以又叫“牛顿问题”.)【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草.所以45÷3=15头牛1周可以吃1周新长出的草.即相当于给出15头牛专门吃新长出的草.于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;所以需要12×6÷6=12(周),于是2l头牛需吃12周.评注:我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了.一般方法:先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙);再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙.或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数.2.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【分析与解】我们知道24×6=144头牛吃一周吃2个(2公顷+2公顷周长的草).36×12=432头牛吃一周吃4个(2公顷+2公顷12周长的草).于是144÷2=72头牛吃一周吃2公顷+2公顷6周长的草.432÷4=108头牛吃一周吃2公顷+2公顷12周长的草.所以108-72=36头牛一周吃2公顷12—6=6周长的草.即36÷6=d头牛1周吃2公顷1周长的草.对每2公顷配6头牛专吃新长的草,则正好.于是4公顷,配4÷2×6=12头牛专吃新长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷.所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周.于是50头牛需要9周吃10公顷的草.3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【分析与解】一群牛,2天,吃了1块+1块2天新长的;一群牛,6天,吃了2块+2块2+6=8天新长的;即3天,吃了1块+1块8天新长的.即16群牛,1天,吃了1块1天新长的.又因为,13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,它们同时吃完.所以,③=2⨯阴影部分面积.于是,整个为19422+=块地.那么需要193624⨯=群牛吃新长的草,于是19 1262 -⨯⨯()=现在314⨯-().所以需要吃:19312130624-⨯⨯÷-()()=天.所以,一开始将一群牛放到整个草地,则需吃30天.4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【分析与解】我们注意到:牛、马45天吃了原有+45天新长的草① →牛、马90天吃了2原有+90天新长的草⑤马、羊60天吃了原有+60天新长的草②牛、羊90天吃了原有+90天新长的草③↓↓↓马 90天吃了原有+90天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为l÷11()9060+=36天.所以,牛、羊、马一起吃,需36天.5. 有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【分析与解】由于三片牧场的公顷数不一致,给计算带来困难,如果将其均转化为1公顷时的情形.所以表1中,3.6-0.9=2.7头牛吃4星期吃完l公顷原有的草,那么18星期吃完1公顷原有的草需要2.7÷(18÷4)=0.6头牛,加上专门吃新长草的O.9头牛,共需0.6+0.9=1.5头牛,18星期才能吃完1公顷牧场的草.所以需1.5×24=36头牛18星期才能吃完第三片牧场的草.。
小学奥数六年级牛吃草的问题(含答案)1、一块草原长满草,每天牧草都均匀生长.这片草原可供10头牛吃20天,可供15头牛吃10天。
问:可供25头牛吃多少天?1.解析:设1头牛1天吃1份牧草,则牧草每天的生长量:(10×20-15×10)÷(20-10)=5(份),原有草量:10×20-5×20=100(份),则可供25头牛吃100÷(25-5)=5天。
2、12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。
多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?2.解析:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份),每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份),则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份),可供养4536÷126=36头牛。
3、现欲将一池塘水全部抽干,但同时有水匀速流入池塘。
若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。
问:若要5天抽干水,需多少台同样的抽水机来抽水?3.解析:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位,池塘中原有水量:6×20-4×20=40单位。
若要5天内抽干水,需要抽水机40÷5+4=12台。
4、一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?4.解析:设每人每小时的淘水量为“1个单位”,则船内原有水量与3小时内漏水总量之和为:1×3×10=30单位,船内原有水量与8小时漏水量之和为1×5×8=40单位,说明8-3=5小时进水40-30=10单位,即进水速度为每小时10÷5=2单位,而发现漏水时,船内已有30-2×3=24单位的水了。
牛吃草问题讲义牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。
一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。
典例评析例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天?例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。
请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天?【分析】这片牧场上的牧草的数量每天在变化。
解题的关键应找到不变量——即原来的牧草数量。
因为总草量可以分成两部分:原有的草与新长出的草。
新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。
小学数学牛吃草问题知识点总结牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)十(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5 份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3 份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120 份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
牛吃草问题一、知识梳理英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.二、方法归纳同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定 1 头牛 1 天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数) ÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.三、课堂精讲(一)、草匀速增长,不同头数的牛吃同一片次的草:例1. 牧场上长满牧草,每天牧草都匀速生长,这片牧草可供10 头牛吃20 天,可供15 头牛吃10 天,那么,供25 头牛吃多少天?【规律方法】掌握牛吃草问题的解题步骤及解题思路。
【搭配课堂训练题】【难度分级】 A1.牧场上有一片牧草,供24 头牛6 周吃完,供18 头牛10 周吃完。
假定草的生长速度不变,那么供19 头牛几周吃完?2.牧场上有一片匀速生长的草地,可供 27 头牛吃 6 周,或供 23 头牛吃 9 周,那么它可供多少头牛吃 18 周?头牛吃几周?例2.一片牧草,每天生长的速度相同,现在这片牧草可供16 头牛吃20 天,或者可供80 只羊吃12 天,如果1 头牛的吃草量等于4 只羊的吃草量,那么10 头牛与60 只羊一起吃可吃多少天?【规律方法】理解把两种不同动物的吃草量转化为同一种动物的吃草量。
六年级数学专题讲解:牛吃草问题
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.
基本特点:原草量和新草生长速度是不变的;
关键问题:确定两个不变的量.
基本公式:
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
例题解析:
一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天. 如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少. 原因是因为其一,用的时间少;其二,对应的长出来的草也少. 这个差就是这片草地5天长出来的草. 每天长出来的草可供5头牛吃一天. 如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5
=5(头)→可供5头牛吃一天.
150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天
100÷(10-5) =100÷5 =20(天)
答:若供10头牛吃,可以吃20天。
网络搜集整理,仅供参考。
一、知识梳理英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.二、方法归纳同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定 1 头牛 1 天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数) ÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.三、课堂精讲(一)、草匀速增长,不同头数的牛吃同一片次的草:例1. 牧场上长满牧草,每天牧草都匀速生长,这片牧草可供10 头牛吃20 天,可供15 头牛吃10 天,那么,供25 头牛吃多少天?【规律方法】掌握牛吃草问题的解题步骤及解题思路。
【搭配课堂训练题】【难度分级】 A1.牧场上有一片牧草,供24 头牛6 周吃完,供18 头牛10 周吃完。
假定草的生长速度不变,那么供19 头牛几周吃完?2.牧场上有一片匀速生长的草地,可供 27 头牛吃 6 周,或供 23 头牛吃 9 周,那么它可供多少头牛吃 18 周?3. 牧场上有一片匀速生长的草地,可供27 头牛吃6 周,或供23 头牛吃9 周,那么可供21头牛吃几周?例2.一片牧草,每天生长的速度相同,现在这片牧草可供16 头牛吃20 天,或者可供80 只羊吃12 天,如果1 头牛的吃草量等于4 只羊的吃草量,那么10 头牛与60 只羊一起吃可吃多少天?【规律方法】理解把两种不同动物的吃草量转化为同一种动物的吃草量。
【搭配课堂训练题】【难度分级】 B4.一片牧草,每天生长的速度相同。
现在这片牧草可供20 头牛吃12 天,或可供60 只羊吃24 天。
如果1 头牛的吃草量等于4 只羊的吃草量,那么12 头牛与88 只羊一起吃可以吃几天?5. 有一片草地,草每天的生产速度相同,若 14 头牛30 天可将草吃完,70 只羊30 天也可将草吃完(4 只羊1 天的吃草量相当于 1 头牛1 天的吃草量),那么,17 头牛和 20 只羊多少天可将草吃完?例3.一水库存水量一定,河水均匀入库。
5 台抽水机连续20 天可抽干;6 台同样的抽水机连续15 天可抽干。
若要求6 天抽干,需要多少台同样的抽水机?【规律方法】掌握牛吃草问题的变形,会类比牛吃草问题解决问题。
【搭配课堂训练题】【难度分级】 B6.一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水。
如果用 12 人舀水,6 分钟可以舀完。
如果只有 5 人舀水,要 20 分钟才能舀完。
现在要想 2 分钟舀完,需要多少人?7.有一水池,池底有泉水不断涌出。
用 10 部抽水机 20 小时可以把水抽干,用 15 部相同的抽水机 10 小时可以把水抽干,那么用 25 部这样的抽水机多少小时可以把水抽干?例4.某超市平均每小时有 60 人排队付款,每一个收银台每小时能应付 80 人,某天某时段内,该超市只有一个收银台工作,付款开始 4 小时就没有顾客排队了,如果当时有两个收银台工作,哪么付款开始几小时后就没有人排队了?【搭配课堂训练题】【难度分级】 B8. 画展 9 点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开 3 个入场口,9 点9 分就不再有人排队;如果开 5 个入场口,9 点5 分就没有人排队。
求第一个观众到达的时间?(二)、草匀速减少,不同头数的牛吃同一片次的草例5.由于天气逐渐变冷,牧场上的草每天匀速减少。
经过计算,牧场上的草可供20 头牛吃5 天,或者供16 头牛吃6 天,那么这片牧场上的草可供11 头牛吃几天?【规律方法】掌握草量匀速减少的牛吃草问题的常见解决方法【搭配课堂训练题】【难度分级】 B9. 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
如果牧场上的草可供20 头牛吃5 天,或者供15 头吃6 天,那么可供多少头牛吃10 天?(三)、草匀速增长,不同头数的牛吃同不同片草地的草例 6.有三块草地,面积分别是5 公顷,15 公顷和24 公顷。
草地上的草一样厚而且长得一样快。
第一块草地可供10 头牛吃30 天;第二块草地可供28 头牛吃45 天。
那么第三块草地可供多少头牛吃80 天?【规律方法】掌握草匀速增长,不同头数的牛吃同不同片草地的草的题型的解决方法。
【搭配课堂训练题】【难度分级】 C10. 12 头牛28 天可以吃完 10 公亩牧场上全部牧草,21 头牛63 天可以吃完 30 公亩牧场上全部牧草。
多少头牛 126 天可以吃完 72 公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?11. 牧场有三块草地,面积分别是 4、8、12 公亩,草地上的草一样密,生长一样快.第一块地可供 10 只小梅花鹿吃 15 天,第二块地可供 14 只小梅花鹿吃 25 天,第三块地可供 15 只小梅花鹿吃多少天?四、讲练结合题1.一牧场放牛58 头,7 天把草吃完;若放牛50 头,则9 天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6 天可以把草吃完?2.林子里有猴子喜欢吃的野果,23 只猴子可在 9 周内吃光,21 只猴子可在 12 周内吃光,问如果 33 只猴子一起吃,需要几周吃完?(假定野果生长的速度不变)3.一片茂盛的草地,每天的生长速度相同,现在这片青草 16 头牛可吃 15 天,或者可供100 只羊吃 6 天,而 4 只羊的吃草量相当于 l 头牛的吃草量,那么 8 头牛与 48 只羊一起吃,可以吃多少天?4. 某车站在检票前若干分钟就开始排队了,每分钟来的旅客一样多,从开始检票到队伍消失(还有人在接受检票),若开4 个检票口,要30 分钟,开5 个检票口,要20 分钟。
如果同时开7 个检票口,需要多少分钟?5. 画展 8 点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开 3 个入场口,8 点九分就不再有人排队。
如果开 5 个入场口,8 点5 分就没有人排队。
第一个观众到达的时间是多少?6. 一牧场上的青草每天都匀速生长。
这片青草可供 17 头牛吃 30 天,或供 19 头牛吃 24 天。
现有一群牛,吃了 6 天后卖掉 4 头,余下的牛又吃了 2 天将草吃完,这群牛原来有多少头?7. 两只蜗牛由于耐不住阳光的照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走 20 分米,另一只只能走 15 分米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只蜗牛 5 昼夜到达井底,另一只却恰好用了 6 昼夜。
问井深是多少?8. 有三块草地,面积分别为4 公顷、8 公顷和10 公顷。
草地上的草一样厚,而其长得一样快。
第一块草地可供24 头牛吃6 周,第二块草地可供36 头牛吃12 周。
问:第三块草地可供50 头牛吃几周?五.课后自测练习1. 有一只船漏了一个洞,水以均匀的速度进入船内,发现漏洞时船已经进了一些水。
如果用 12 个人淘水,需 3 小时才能淘完。
如果只有 5 个人淘水,要 10 小时才能淘完。
现在要想在 2 个小时内淘完,需要多少人淘水?2.有两个顽皮的孩子逆着自动扶梯行驶的方向行走。
男孩每秒可以走 3 梯级,女孩每秒可以走 2 级梯级,结果从附扶梯的一端到达另一端,男孩走了 100 秒,女孩走了 300 秒。
请问:该扶梯共有多少级梯级?3.天山草场,假设每天草都均匀生长。
这片草场经过测算可供 100 只羊吃200 天,或可供150 只羊吃 100 天。
问:如果放牧 250 只羊可以吃多少天?放牧这么多羊对吗?为防止草场沙化,这片草场最多可以放牧多少只羊?五.课后自测练习1. 有一只船漏了一个洞,水以均匀的速度进入船内,发现漏洞时船已经进了一些水。
如果用 12 个人淘水,需 3 小时才能淘完。
如果只有 5 个人淘水,要 10 小时才能淘完。
现在要想在 2 个小时内淘完,需要多少人淘水?4. 一片均匀生长的草地,可以供 18 头牛吃 40 天,或者供 12 头牛与 36 只羊吃 25 天,如果 1 头牛每天的吃草量相当于 3 只羊每天的吃草量.请问:这片草地让 17 头牛与多少只羊一起吃,刚好 16 天吃完?5.经测算,地球上的资源可供100 亿人生活100 年,或可供80 亿人生话300 年.假设地球新生的资源增长的速度是一定的,为使人类有不断发展的潜力,地球最多能养活多少人?某火车站的检票口开始检票前已有 945 名旅客排队等待检票。
此时,每分钟还有固定的若6.干人前来进口处准备进站。
如果开放 4 个检票口,15 分钟可放完旅客;如果开放 8 个检票口,7 分钟可以放完旅客。
照此放人的速度,现要想在 5 分钟内放完所有旅客,需要开放几个检票口?7. 一片草地,可供 6 头牛吃 30 天,或者可供 5 头牛吃 40 天,如果 4 头牛吃 30 天,又增加了 2 头牛一起吃,还可以再吃几天?8. 一片匀速生长的牧草,如果让马和牛去吃,15 天将草吃尽;如果让马和羊去吃,20 天将草吃尽;如果让牛和羊去吃,30 天将草吃尽。
已知牛和羊每天的吃草量的和等于马每天的吃草量。
现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?9.(2016 年第二十一届“华赛杯”决赛)有一片草场,10 头牛 8 天可以吃完草场上的草;15 头牛,如果从第一天开始每天少一头,可以 5 天吃完。
那么草场上每天都长出来的草够头牛吃一天。
第九讲牛吃草问题【答案】例1 设 1 头牛吃一天的草量为一份第一次吃草量20×10=200,第二次吃草量,15×10=150;每天生长草量50÷10=5.原有草量(10-5)×20=100 或 200-5×20=100.25 头牛分两组,5 头去吃生长的草,其余 20 头去吃原有的草那么100÷20=5(天) 答:可供 25 头牛吃 5 天.【搭配课堂训练题】1.设 1 头牛吃一周的草量的为一份.(1)24 头牛吃 6 周的草量24 ⨯ 6 = 144 (份)(2)18 头牛吃 10 周的草量18⨯10 = 180 (份)(3)(10-6)周新长的草量180 -144 = 36 (份)(4)每周新长的草量36÷(10-6)=9(份)(5)原有草量24⨯ 6 - 9 ⨯ 6 = 90 (份)或18⨯10 - 9⨯10 = 90 (份)(6)全部牧草吃完所用时间不妨让 19 头牛中的 9 头牛去吃新长的草量,剩下的 10 头牛吃原有草量,有90÷(19-9)=9(周)答:供 19 头牛吃 9 周.2.如果每 1 头牛 1 周吃草 1 份,则27 头牛6 周吃27×6=162 份23 头牛周天吃23×9=207 份所以牧场每周长新草(207-162)÷(9-6)=15 份原来牧场有草 162-15×6=72 份18 周共有草15×18+72=342 份342÷18=19 头答:可供 19 头牛吃 18 周3. 假设每头牛每周吃青草 1 份,青草的生长速度:(23×9-27×6)÷(9-6),=45÷3,=15(份);草地原有的草的份数:27×6-15×6,=162-90,=72(份);每周生长的 15 份草可供 15 头牛去吃,那么剩下的 21-15=6 头牛吃 72 份草:72÷(21-15),=72÷6,=12(周);答:这片草地可供 21 头牛吃 12 周.例2 设每头牛每天吃草 1 份,把羊的只数转化为牛的头数为:80÷4=20(头),60÷4=15(头);草每天生长的份数:(16×20-20×12)÷(20-12),=(320-240)÷8,=80÷8,=10(份);草地原有的草的份数:(16-10)×20=120(份);10 头牛和 60 只羊就相当于有牛:10+15=25(头);所吃天数为:120÷(25-10),=120÷15,=8(天);答:10 头牛和 60 只羊一起能吃 8 天.【搭配课堂训练题】4. 设每头牛每天吃草 1 份,把羊的只数转化为牛的头数为:60÷4=15(头),88÷4=22(头)草每天生长的份数:(15×24-20×12)÷(24-12)=(360-240)÷12=120÷12=10(份)草地原有的草的份数:(20-10)×12=120(份)12 头牛和 88 只羊就相当于有牛:12+22=34(头);所吃天数为:120÷(34-10)=120÷24=5(天)答:12 头牛和 88 只羊一起能吃 5 天5.设一头牛一天的吃草量为 1 份,那么 70 只羊,20 只羊转化成牛的头数是:70÷4=17.5(头),20÷4=5(头);草每天的生长速度是:(14×30-17.5×16)÷(30-16),=140÷14,=10(份),原有的草是:14×30-30×10=120(份),那么 17 头牛和 20 只羊也就相当于牛的头数是:17+5=22(头);那么每天生长的 10 份的草就够 22 头牛中的 10 头牛吃的,剩下的牛去吃 120 份需要的天数是:120÷(22-10),=120÷12,=10(天),所以 22 头牛也就相当于 17 头牛和 20 只羊10 天可将草吃完.答:17 头牛和 20 只羊10 天可将草吃完.例 3 1 台抽水机 1 天抽水量为 1,河水每天均匀入库量:(20×5-15×6)÷(20-15),=10÷5,=2,水库原有存水量:20×5-2×20=60,6 天抽干,需要同样的抽水机的台数:(60+2×6)÷6,=72÷6,=12(台),答:6 天抽干,需要 12 台同样的抽水机,【搭配课堂训练题】6.设每人每分钟舀的水是 1 份。