六年级奥数,牛吃草问题,教师讲义
- 格式:doc
- 大小:49.00 KB
- 文档页数:6
6-1-10.牛吃草问题(一)教学目标1.理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2.初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系知识精讲英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.例题精讲模块一、一块地的“牛吃草问题”【例 1】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【巩固】牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.【巩固】一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【例 2】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
牛吃草问题(讲义)一、教学目标1、知识与技能:(1)能够理解牛吃草问题的实质,掌握该类问题的解法。
(2)通过问题的解法,可以根据所给条件图示或思维图,finding the answer。
2、过程与方法:通过引领学生自主探究、合作学习等方式,激发学生的问题意识和探究欲望,培养学生的思维能力和解决问题的能力。
二、教学内容牛吃草问题的讲解三、教学方法1、解释法2、举例法3、归纳法四、教学过程Step1、引入(1)学生在小组中集思广益,思考有没有什么常识可以与牛吃草问题相关联。
比如:牛一定会一口一口地吃草,不会一口吃掉。
(2)老师引入牛吃草问题。
如果有一头牛在一片长满草的牧场上吃草,它平均每天可以吃掉牧场上草的90%。
那么如果这头牛吃了2天,牧场上还剩下多少草?Step2、探究(1)老师让学生分组探究。
思考:如果牛吃了1天,牧场上还剩下多少草?如果牛连续吃了两个周六(即2天),又会吃掉多少?如果吃了3天、4天呢?请你们探究该问题的解法。
(2)学生分享与总结。
学生展示自己的解法,并总结出如下规律:n 天后还剩1 ($ 1 \div 10 $) $\times 10 = 1$2 ($ 1 \div 10 $) $\times 9 = 0.9$3 ($ 1 \div 10 $) $\times 8 = 0.8$……n ($ 1 \div 10 $) $\times (10-n) $Step3、引申(1)如上所述,牧场的草只剩10%。
如果这时再入一只牛来吃草,那么还能支撑多少天?(2)如果现在牛吃1天最多能吃掉30%草,那么还能支撑多少天?Step4、总结回顾笔记,让学生总结解决牛吃草问题的方法。
五、教学总结本节课学习到了牛吃草问题。
引入问题后,老师呈现出其解决方式,学生自主学习和合作学习,掌握相关知识与技能。
通过此类问题的引导,学生可以从一系列看似简单的问题中,慢慢发展出自己的数学思维和解题方法,从而增加解决问题的能力。
牛吃草问题教学目的:1、学会在草生长或枯萎时,计算牛吃草的天数或牛的头数。
2、通过吃草的天数和牛的头数,来计算草地的生长或枯萎速度及原有的草量。
3、掌握典型牛吃草问题的求解方法。
4、掌握草地面积变化的牛吃草问题解法。
教学重难点:1、计算草生长速度和原有草量2、归一法解决草地面积变化类牛吃草问题1、牛吃草,看似主角是牛,其实主角是草,草原上的草到了春天,春意盎然,“蹭蹭”的长,长的比牛吃的还快;到了秋天,就算没有牛,草地自己也会慢慢枯萎。
所以草地自身草量的变化非常关键。
草生长情况下吃草天数的计算,最关键的一步是求出“草地每天真正的减少量。
”牛吃草问题,只要抓住草地每天的减少量,其他问题都好办!2、通过吃草的天数和牛的头数,来计算草地的情况,关键还是围绕草地进行分析。
主要计算三个量:①草地在多少天内提供了多少草?②多少是新草?③多少是老草?3、解决典型的牛吃草问题,要紧紧抓牢两个关键的量:①草的生长速度②原有的草量4、解决草地面积变化牛吃草问题,最关键的一步是“归一”。
先把已知条件归为一公顷草地提供草的情况,再通过对比算出一公顷草地的草的生长速度和原有草量。
归一运算的步骤:先算出整块草地在多少天内提供了多少草,再除以草地面积,求出一公顷草地在多少天内提供了多少草。
草量变化时求牛数与天数例题1 1头牛1天吃“1份草”,草地一开始有60份草,每天新生长2份草,问8头牛几天可以吃完整片草地的草?例题2 1头牛1天吃“1份草”,草地一开始有60份草,每天枯萎2份草,问8头牛几天可以吃完整片草地的草?每天减少量:8×1+2=10份60÷10=6天草地6天被吃完!计算草速与原有草量例题3 一片草地8头牛吃10天,4头牛吃18天,你觉得这片草地是在生长还是枯萎呢?如果一头牛一天吃的草量为1份,那这片草地每天枯萎或者减少的草量是多少份?例题4 一片草地8头牛吃10天,6头牛吃15天,如果一头牛一天吃的草量为1份,那这片草地原有多少份草呢?总草量:6×15=90份新草:15×2=30份老草:90-30=60份典型牛吃草问题例题5 一片草地,8头牛吃10天,6头牛吃15天,4头牛吃几天?草地面积变化牛吃草问题例题6 同样一片草地,15头牛20天吃了其中的5公顷,24头牛30天吃了其中的9公顷,40头牛多少天可以吃其中的10公顷?训练1 1头牛1天吃“1份草”,草地开始有60份草,每天新生长2份草,问几头牛5天可以吃完整片草地的草?训练2 有一片牧场,草地上现有20 0份草,草地每天都均匀地生长5份草.若一开始放25头牛,每头牛每天吃1份草,一共可以吃几天?训练3 一片草地8头牛吃10天,6头牛吃15天,你觉得这片草地是在生长还是枯萎呢?如果一头牛一天吃的草量为1份,那这片草地每天枯萎或者减少的草量是多少份?训练4 有一片牧场,每天都在均匀地生长草,每头牛每天吃1份草.如果在牧场上放养14头牛,那么15天能把草吃完;如果只放养19头牛,那么10天能把草吃完.那么每天均匀长几份草?草地一开始原有几份草?训练5 有一片牧场,每天都在均匀地生长草,每头牛每天吃1份草.如果在牧场上放养20头牛,那么10天能把草吃完;如果只放养15头牛,那么15天能把草吃完.如果要想一直有草吃,那么最多放几头牛?(思考:一直有草吃的含义是什么?)训练6 一片面积为7公顷的草地,可供10头牛吃70天。
六年级奥数讲义牛吃草问题TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】第三十九周“牛吃草”问题专题简析:牛吃草问题是牛顿问题,因牛顿提出而得名的。
“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3×10÷6=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。
因为草每天走在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。
解答这类题的关键是要想办法从变化中找到不变的量。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。
正确计算草地上原有的草及每天长出的草,问题就容易解决了。
例1:一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?这片草地上的草的数量每天都在变化,解题的关键应找到不变量——即原来的草的数量。
因为总草量可以分成两部分:原有的草与新长出的草。
新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的。
假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份),此时新草与原有的草均被吃完;23头牛9周需吃23×9=207(份),此时新草与原有的草也均被吃完。
而162份是原有的草的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)÷(9-6)=15(份),所以,原有草的数量为:162-15×6=72(份)。
这片草地每周新长草15份相当于可安排15头牛专吃新长出来的草,于是这片草地可供21 头牛吃72÷(21-15)=12(周)练习11、一片草地,每天都匀速长出青草,如果可供24头牛吃6天,20头牛吃10天,那么可供19头牛吃几天?2、牧场上一片草地,每天牧草都匀速生长,这片牧草可供10头牛吃20天,或者可供15头牛吃10天,问可供25头牛吃几天?3、牧场上的青草每天都在匀速生长,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?例2:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
牛吃草问题讲义牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。
一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。
典例评析例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天?例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。
请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天?【分析】这片牧场上的牧草的数量每天在变化。
解题的关键应找到不变量——即原来的牧草数量。
因为总草量可以分成两部分:原有的草与新长出的草。
新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。
牛吃草问题一、知识梳理英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.二、方法归纳同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定 1 头牛 1 天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数) ÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.三、课堂精讲(一)、草匀速增长,不同头数的牛吃同一片次的草:例1. 牧场上长满牧草,每天牧草都匀速生长,这片牧草可供10 头牛吃20 天,可供15 头牛吃10 天,那么,供25 头牛吃多少天?【规律方法】掌握牛吃草问题的解题步骤及解题思路。
【搭配课堂训练题】【难度分级】 A1.牧场上有一片牧草,供24 头牛6 周吃完,供18 头牛10 周吃完。
假定草的生长速度不变,那么供19 头牛几周吃完?2.牧场上有一片匀速生长的草地,可供 27 头牛吃 6 周,或供 23 头牛吃 9 周,那么它可供多少头牛吃 18 周?头牛吃几周?例2.一片牧草,每天生长的速度相同,现在这片牧草可供16 头牛吃20 天,或者可供80 只羊吃12 天,如果1 头牛的吃草量等于4 只羊的吃草量,那么10 头牛与60 只羊一起吃可吃多少天?【规律方法】理解把两种不同动物的吃草量转化为同一种动物的吃草量。
六年级数学专题讲解:牛吃草问题
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.
基本特点:原草量和新草生长速度是不变的;
关键问题:确定两个不变的量.
基本公式:
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
例题解析:
一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天. 如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少. 原因是因为其一,用的时间少;其二,对应的长出来的草也少. 这个差就是这片草地5天长出来的草. 每天长出来的草可供5头牛吃一天. 如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5
=5(头)→可供5头牛吃一天.
150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天
100÷(10-5) =100÷5 =20(天)
答:若供10头牛吃,可以吃20天。
网络搜集整理,仅供参考。
牛吃草问题讲义牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。
一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。
典例评析例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天?例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。
请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天?【分析】这片牧场上的牧草的数量每天在变化。
解题的关键应找到不变量——即原来的牧草数量。
因为总草量可以分成两部分:原有的草与新长出的草。
新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。
从这道题我们看到,草每天在长,牛每天在吃,都是在变化的,但是也有不变的,都是什么不变啊?草是以匀速生长的,也就是说每天长的草是不变的;,同样,每天牛吃草的量也是不变的,对吧?这就是我们解题的关键。
这里因为未知数很多,我教大家一种巧妙的设未知数的方法,叫做设“1”法。
我们设牛每天吃草的数量为1份,具体1份是多少我们不知道,也不用管它,【思考1】一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天?设1头牛1天吃的草为1份。
则每天新生的草量是(20×10-24×6)÷(10-6)=14份,原来的草量是(24-14)×6=60份。
可供18头牛吃60÷(18-14)=15天例2 因天气寒冷,牧场上的草不仅不生长,反而每天以均匀的速度在减少。
已知牧场上的草可供33头牛吃5天,可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天?【分析】与例1不同的是,不但没有新长出的草,而且原有的草还在匀速减少,但是,我们同样可以用类似的方法求出每天减少的草量和原来的草的总量【思考2】由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。
那么,可供11头牛吃几天?8天,设一头牛一天吃的草量为一份。
牧场每天减少的草量:(20×5-16×6)÷(6-5)=4份,原来的草量:(20 +4)× 5=120份,可供11头牛吃120÷(11+4)=8天。
总结:想办法从变化中找到不变的量。
牧场上原有的草是不变的,新长出的草虽然在变化,但是因为是匀速生长,所以每天新长出的草量也是不变的。
正确计算草地上原有的草及每天新长出的草,问题就会迎刃而解。
知识衍变牛吃草基本问题就先介绍到这,希望大家掌握这种方法,以后出现样吃草问题,驴吃草问题也知道怎么做,甚至,以下这些问题都可以应用牛吃草问题解决方法例3 自动扶梯以均匀速度由下往上行驶,小明和小丽从扶梯上楼,已知小明每分钟走25级台阶,小丽每分钟走2 0级台阶,结果小明用了5分钟,小丽用了6分钟分别到达楼上。
该扶梯共有多少级台阶?【分析】在这道题中,“总的草量”变成了“扶梯的台阶总级数”,“草”变成了“台阶”,“牛”变成了“速度”,所以也可以看成是“牛吃草”问题来解答。
【思考3】两只蜗牛同时从一口井的井顶爬向井底。
白天往下爬,两只蜗牛的爬行速度是不同的,一只每天爬行2 0分米,另一只每天爬行15分米。
黑夜往下滑,两只蜗牛滑行的速度却是相同的,结果一只蜗牛恰好用了5个昼夜到达井底,另一只恰好用了6个昼夜到达井底。
那么,井深多少米?大家说这里什么是牛?什么是草?都什么是不变的?15米。
蜗牛每夜下降:(20×5-15×6)÷(6-5)=10分米所以井深:(20+10)×5=150分米=15米例4 一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。
如果用12人舀水,3小时舀完。
如果只有5个人舀水,要10小时才能舀完。
现在要想在2小时舀完,需要多少人?【分析】典型的“牛吃草”问题,找出“牛”和“草”是解题的关键【思考4】一个水池,池底有泉水不断涌出,用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可把水抽干。
那么用25部这样的抽水机多少小时可以把水抽干?5小时。
设一台抽水机一小时抽水一份。
则每小时涌出的水量是:(20×10-15×10)÷(20-10)=5份,池内原有的水是:(10-5)×20=100份.所以,用25部抽水机需要:100÷(25-5)=5小时思维拓展例5 有一牧场长满牧草,牧草每天匀速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在有若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有牛多少头?【分析】“牛吃草”问题的特点是随时间的增长,所研究的量也等量地增加。
解答时,要抓住这个关键问题,也就是要求出原来的量和每天增加的量各是多少。
【思考5】一个牧场上的青草每天都匀速生长。
这片青草可供27头牛吃6天,或供23头牛吃9天,现有一群牛吃了4天后卖掉2头,余下的牛又吃了4天将草吃完。
这群牛原来有多少头?25头。
设每头牛每天的吃草量为1份。
每天新生的草量为:(23×9-27×6)÷(20-10)=15份,原有的草量为(2 7-15)×6=72份。
如两头牛不卖掉,这群牛在4+4=8天内吃草量72+15×8+2×4=200份。
所以这群牛原来有200÷8 =25头例6 有三块草地,面积分别为5公顷,6公顷和8公顷。
每块地每公顷的草量相同而且长的一样快,第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。
第三块草地可供19头牛吃多少天?【分析】由题目可知,这是三块面积不同的草地,为了解决这个问题,首先要将这三块草地的面积统一起来。
例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。
如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。
设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。
为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。
由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。
那么可以列方程:x+6y=27×6x+9y=23×9解得x=72,y=15若放21头牛,设n天可以吃完,则:72+15n=21nn=12例2一水库原有存水量一定,河水每天入库。
5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要多少台同样的抽水机?摘录条件:5台 20天原有水+20天入库量6台 15天原有水+15天入库量?台 6天原有水+6天入库量小学解答:设1台1天抽水量为"1",第一次总量为5×20=100,第二次总量为6×15=90每天入库量(100-90)÷(20-15)=220天入库2×20=40,原有水100-40=6060+2×6=7272÷6=12(台)初中解答:假设原来有的水为x份,每天流进来的水为y份,每台机器抽出的水是1个单位。
那么可以列方程:x+20y=20×5x+15y=6×15解得x=60,y=2若要6天抽完,设n台机器可以抽完,则:60+6×2=6 nn=12巩固练习1.一块牧场长满了草,每天均匀生长。
这块牧场的草可供10头牛吃40天,供15头牛吃20天。
可供25头牛吃__天。
()A. 10B. 5C. 20A 假设1头牛1天吃草的量为1份。
每天新生的草量为:(10×40-15×20)÷(40-20)=5(份)。
那么愿草量为:10×40-40×5=200(份),安排5头牛专门吃每天新长出来的草,这块牧场可供25头牛吃:200÷(25-5)=10(天)。
2.一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光。
那么想用4天的时间,把这块草地的草吃光,需要__只羊。
()A. 22B. 23C. 24B假设1只羊1天吃草的量为1份。
每天新生草量是:(14×10-20×5)÷(10-5)=8(份)原草量是:20×5-8×5=60(份)安排8只羊专门吃每天新长出来的草,4天时间吃光这块草地共需羊:60÷4+8=23(只)3.画展9时开门,但早有人来排队等候入场。