第7讲 配合物的化学键理论-分子轨道理论
- 格式:ppt
- 大小:1.26 MB
- 文档页数:29
有机化学基础知识分子轨道理论简介有机化学是研究碳元素以及其化合物的科学,其原理和方法的核心是分子轨道理论。
分子轨道理论是描述和解释分子化学性质的基本原理,其通过研究分子中电子的能级分布和电子运动规律,揭示了分子结构、化学键形成和反应机理等方面的重要信息。
本文将对有机化学中的分子轨道理论进行简要介绍。
一、分子轨道的定义和特点分子轨道是描述分子中电子分布情况的数学函数。
通过将原子轨道进行线性组合,得到了分子轨道的概念。
分子轨道的形成是因为原子中的电子在形成分子时会重新排列,使得其波函数叠加形成新的电子状态。
分子轨道的特点如下:1. 分子轨道覆盖整个分子,而不是单个原子。
2. 分子轨道对应不同的能级,能量最低的为被称为基态分子轨道,其余为激发态分子轨道。
3. 分子轨道可以由两个或多个原子的原子轨道线性组合而成,其线性组合系数可用于描述相应原子轨道的贡献程度。
二、分子轨道理论的基本原理1. 分子轨道理论的基本假设分子轨道理论基于如下假设:- 原子核坐标固定不变,只考虑电子之间的相互作用。
- 分子中的电子是全体电子的平均势能下的粒子,相互之间的作用相同。
2. 分子轨道的形成和组成分子轨道的形成是通过对原子轨道的线性组合得到的。
对于两个原子的分子,分子轨道由两个原子轨道的线性组合形成,即σ轨道和π轨道。
σ轨道是沿着核心成键轴对称的,π轨道则是与核心成键轴垂直的轨道。
3. 轨道能级的填充规则按照泡利不相容原理,每个分子轨道最多容纳两个电子,这两个电子自旋方向相反。
根据轨道能级的次序填充电子,称为洪诺-傅克规则。
三、分子轨道理论在有机化学中的应用1. 分子轨道的能级和键长根据分子轨道理论,分子轨道的能级高低决定着分子的稳定性。
在反应中,电子容易占据能量较低的轨道,从而促进化学键的形成。
此外,分子轨道的能级还可以用来解释分子的键长和键能。
2. 共轭体系的稳定性通过在有机分子中引入共轭结构,可以产生具有稳定性的共轭体系。
分子轨道理论的基本概念分子轨道理论是描述分子内电子结构的理论框架,它是理解分子化学和化学反应的重要工具。
在分子轨道理论中,分子中的电子被认为存在于由原子核构成的分子轨道中,这些分子轨道是原子轨道的线性组合。
通过分子轨道理论,我们可以更好地理解分子的稳定性、反应性以及光谱性质。
本文将介绍分子轨道理论的基本概念,包括分子轨道的构成、分子轨道的类型以及分子轨道的能级顺序等内容。
1. 分子轨道的构成在分子轨道理论中,分子轨道是由原子轨道线性组合而成的。
原子轨道可以是原子的1s、2s、2p等轨道,它们在形成分子时会相互叠加、重叠并形成新的分子轨道。
分子轨道的构成可以通过线性组合原子轨道(Linear Combination of Atomic Orbitals,LCAO)方法来描述。
在LCAO方法中,原子轨道的波函数被线性组合,从而形成分子轨道的波函数。
通过适当的线性组合系数,可以得到不同类型的分子轨道,如σ轨道、π轨道等。
2. 分子轨道的类型根据分子轨道的对称性和能量特征,可以将分子轨道分为不同类型。
其中,σ轨道是沿着两原子核之间轴向的对称轨道,具有较高的电子密度;π轨道则是垂直于两原子核之间轴向的对称轨道,电子密度主要集中在两原子核之间的区域。
此外,还有δ轨道、φ轨道等其他类型的分子轨道,它们在不同的分子结构中扮演着重要的角色。
这些不同类型的分子轨道在分子的形成和反应中起着至关重要的作用。
3. 分子轨道的能级顺序分子轨道的能级顺序是指不同类型的分子轨道在能量上的排布顺序。
一般来说,σ轨道的能量较低,π轨道的能量次之,而δ轨道、φ轨道等能级较高。
这种能级顺序的排布对于分子的稳定性和反应性具有重要影响。
例如,在烯烃分子中,π轨道的能级较低,因此烯烃具有较高的反应活性;而在芳香烃中,芳香环中的π轨道形成了稳定的共轭体系,使得芳香烃具有较高的稳定性。
4. 分子轨道的叠加和排斥在分子轨道理论中,分子轨道之间存在叠加和排斥的相互作用。
有机化学中的分子轨道理论在有机化学中,分子轨道理论是一种重要的理论工具,用于解释有机分子的化学性质和反应机理。
分子轨道理论基于量子力学的原理,通过计算和描述分子中电子的运动状态,从而揭示了分子中化学键的形成和断裂、化学反应的进行等重要现象。
本文将介绍有机化学中的分子轨道理论的基本概念、应用以及研究进展。
一、分子轨道理论的基本概念分子轨道理论是基于原子轨道的概念,原子轨道是描述单个原子中电子运动状态的函数。
在一个分子中,原子之间通过共价键形成连接。
根据量子力学的原理,分子中的电子不再局限于单个原子,而是在整个分子中运动。
因此,分子的电子状态需要用一组轨道来描述,这组轨道被称为分子轨道。
分子轨道可以通过线性组合原子轨道(Linear Combination ofAtomic Orbitals,简称LCAO)的方法得到。
LCAO方法假设分子中的分子轨道是由原子轨道线性组合而成的,即每个原子轨道会形成分子轨道的一部分。
通过线性组合的过程,得到的分子轨道既保留了原子轨道的主要特征,又反映了分子中电子的运动状态。
分子轨道可以分为成键轨道和反键轨道。
成键轨道是由原子轨道线性组合形成的,对分子中的共价键的形成起着积极的作用;而反键轨道则是在原子轨道的基础上得到的,它们对共价键的形成没有帮助,反而会削弱共价键。
在分子中,成键轨道和反键轨道总是呈成对存在,它们之间通过分子中的原子核进行相互作用,形成了稳定的分子。
二、分子轨道理论的应用分子轨道理论在有机化学中有着广泛的应用。
它可以通过分析分子轨道的能级和电子分布,预测有机分子的性质和反应行为。
1. 能级结构分子轨道理论可以帮助确定分子中的能级结构。
不同的分子轨道具有不同的能级,电子会填充在低能级的轨道中。
通过计算和实验,可以确定分子中各个分子轨道的能级顺序,从而预测有机分子的稳定性、光谱性质等重要特性。
2. 共价键的形成和断裂分子轨道理论解释了共价键的形成和断裂过程。
配合物的化学键理论摘要:化学键理论在配位化学中有着重要的运用,它现在主要有三大流派。
本文就回顾化学键的发展历程,并对三大化学键理论做出仔细的阐述。
关键字:化学键价键理论分子轨道理论晶体场理论配位场理论化学键的发展历程最早化学家假设原子和原子之间是用一个神秘的钩钩住的,这种设想至今仍留下痕迹,化学键的键字就有钩的意思。
1916年,德国科学家柯塞尔考察大量的事实后得出结论:任何元素的原子都要使最外层满足8 电子稳定结构。
柯塞尔的理论能解释许多离子化合物的形成,但无法解释非离子型化合物。
1923 年,美国化学家路易斯发展了柯塞尔的理论,提出共价键的电子理论:两种元素的原子可以相互共用一对或多对电子,以便达到稀有气体原子的电子结构,这样形成的化学健叫做共价健。
柯塞尔和路易斯的理论常叫原子价电子理论。
它只能定性地描述分子的形成,化学家更需要对化学键做定量阐述。
1927 年,海特勒和伦敦用量子力学处理氢分子,用近似方法计算出氢分子体系的波函数和能量获得成功,这是用量子力学解决共价键问题的首例。
1930 年,鲍林更提出原子成键的杂化理论(杂化轨道理论),洪德把单键、多键分成δ和∏键两类。
δ健是指在沿着连接两个原子核的直线(对称轴)上电子云有最大重叠的共价键,这种键比较稳定。
∏键是指沿电子云垂直于这条直线方向上结合而成的键,这种键比较活泼。
这就使价键理论进一步系统化,使经典的化合价和化学键有机地结合在一起了。
由于上述的价键理论对共扼分子、氧气分子的顺磁性等事实不能有效解释,因此本世纪30 年代后又产生一种新的理论——分子轨道理论。
分子轨道理论在1932 年首先由美国化学家马利肯提出。
他用的方法跟经典化学相距很远,一时不被化学界接受,后经密立根、洪德、休克尔、伦纳德等人努力,使分子轨道理论得到充实和完善。
它把分子看作一个整体,原子化合成分子时,由原子轨道组合成分子轨道,原子的电子属于分子整体。
分子轨道就是电子云占据间,它们可相互重叠成键。
分子轨道理分子轨道理论是化学中的一个重要概念,用于描述分子中原子之间的电子运动。
它在有机化学、无机化学和物理化学等领域中广泛应用。
分子轨道理论指出,原子在分子中的电子不再是属于单个原子的轨道,而是分布在整个分子中的一组分子轨道中。
分子轨道理论主要包括以下几个方面:1. 原子轨道的组合:分子中各个原子的原子轨道将组合成一个新的轨道,用于描述整个分子中的电子运动。
原子轨道的组合方式可以是线性组合,也可以是简单的加法和减法。
2. 分子轨道的分类:分子轨道可分为成键轨道、反键轨道和非成键轨道。
成键轨道是分子中电子密度最高的轨道,由原子轨道的积极相互作用形成。
反键轨道是分子中电子密度最低的轨道,由原子轨道的消极相互作用形成。
非成键轨道则是分子中既不属于成键轨道也不与反键轨道有关联的轨道。
3. 轨道能级:分子中的分子轨道能级与原子轨道能级不同,原子轨道能级具有离散性,而分子轨道能级连续分布。
能级的顺序分别是成键轨道最低、反键轨道最高、非成键轨道在中间。
4. 轨道重叠:分子中的原子轨道之间会发生重叠,这会影响分子中的电子结构。
重叠程度越高,分子的稳定性就越高。
例如化学键就是由两个原子轨道之间的较强重叠形成的。
5. 分子轨道的描述:分子轨道可以用波函数来描述。
波函数可以用于计算分子中的能量、电子密度、电荷分布等物理性质。
在实际应用中,通常使用量子化学计算方法来获得分子轨道的波函数和参数。
总的来说,分子轨道理论为我们了解分子中的电子结构和化学反应提供了基础和框架。
在有机合成和物质设计中,分子轨道理论被广泛应用于分子的构建、反应性和化学性质的预测等方面。