第1章 博弈论基本模型
- 格式:ppt
- 大小:1.34 MB
- 文档页数:39
博弈论经典模型全解析(入门级)1。
囚徒困境这是博弈论中最最经典的案例了-—囚徒困境,非常耐人寻味。
“囚徒困境"说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作).这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪.但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金.而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了.但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
企业在信息化过程中需要与咨询企业、软件供应商打交道的。
在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作.在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。
《经济博弈论》期末考试复习资料第一章导论1.博弈的概念:博弈即一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,并从中各自取得相应结果的过程。
它包括四个要素:参与者,策略,次序和得益。
2.一个博弈的构成要素:博弈模型有下列要素:(1)博弈方。
即博弈中决策并承但结果的参与者.包括个人或组织等:(2)策略。
即博弈方决策、选择的内容,包括行为取舍、经济活动水平或多种行为的特定组合等。
各博弈方的策略选择范围称策略空间。
每个博弈方各选一个策略构成一个策略组合。
(3)进行博弈的次序:次序不同一般就是不同的博弈,即使博弈的其他方面都相同。
(4)得益。
各策略组合对应的各博弈方获得的数值结果,可以是经济利益,也可以是非经济利益折算的效用等。
3.合作博弈和非合作博弈的区别:合作博弈:允许存在有约束力协议的博弈;非合作博弈:不允许存在有约束力协议的博弈。
主要区别:人们的行为互相作用时,当事人能否达成一个具有约束力的协议。
假设博弈方是两个寡头企业,如果他们之间达成一个协议,联合最大化垄断利润,并且各自按这个协议生产,就是合作博弈。
如果达不成协议,或不遵守协议,每个企业都只选择自己的最优产品(价格),则是非合作博弈。
合作博弈:团体理性(效率高,公正,公平)非合作博弈:个人理性,个人最优决策(可能有效率,可能无效率)4.完全理性和有限理性:完全理性:有完美的分析判断能力和不会犯选择行为的错误。
有限理性:博弈方的判断选择能力有缺陷。
区分两者的重要性在于如果决策者是有限理性的,那么他们的策略行为和博弈结果通常与在博弈方有完全理想假设的基础上的预测有很大差距,以完全理性为基础的博弈分析可能会失效。
所以不能简单地假设各博弈方都完全理性。
5.个体理性和集体理性:个体理性:以个体利益最大为目标;集体理性:追求集体利益最大化。
第一章课后题:2、4、56.设定一个博弈模型必须确定哪几个方面?设定一个博弈必须确定的方面包括:(1)博弈方,即博弈中进行决策并承担结果的参与者;(2)策略(空间),即博弈方选择的内容,可以是方向、取舍选择,也可以是连续的数量水平等;(3)得益或得益函数,即博弈方行为、策略选择的相应后果、结果,必须是数量或者能够折算成数量;(4)博弈次序,即博弈方行为、选择的先后次序或者重复次数等;(5)信息结构,即博弈方相互对其他博弈方行为或最终利益的了解程度;(6)行为逻辑和理性程度,即博弈方是依据个体理性还是集体理性行为,以及理性的程度等。
博弈模型及竞争策略简介博弈模型是用来分析决策者之间相互作用关系的数学工具。
在经济学中,博弈模型被广泛应用于研究市场竞争和企业策略等问题。
本文将介绍博弈模型的基本概念和基本原理,并介绍一些常见的博弈模型和竞争策略。
博弈模型的基本概念和基本原理:博弈模型是一种描述决策者行为和相互作用的数学工具。
博弈模型主要包括决策者、行动、支付函数和解的概念。
决策者是指参与博弈的个体或组织,他们根据自身利益和目标做出决策。
行动是指决策者可以选择的各种行为方式。
支付函数是用来衡量每个决策者在不同行动组合下的效用或收益。
解是指在博弈中各个参与者都做出最佳决策的状态。
博弈模型的基本原理包括理性选择、均衡和解的概念。
理性选择是指决策者根据自己的目标和利益做出决策,不会做出明显损害自己利益的决策。
均衡是指在博弈中各个决策者做出的决策组合是相互一致的,没有一个决策者可以通过改变自己的决策而提高自己的效用。
解是指在博弈中各个参与者都做出最佳决策的状态,也就是说没有一个决策者可以通过改变自己的决策而提高自己的效用。
博弈模型有多种解的概念,例如纳什均衡、帕累托最优、卓亚定理等。
常见的博弈模型和竞争策略:最常见的博弈模型是纳什均衡模型。
纳什均衡是指在博弈中各个决策者做出的决策组合是相互一致的,没有一个决策者可以通过改变自己的决策而提高自己的效用。
在纳什均衡下,每个决策者都采取了最优的个体策略,而无法通过改变策略来获得更高的效用。
博弈模型还包括零和博弈模型和非零和博弈模型。
零和博弈模型是指在博弈中各个决策者的利益是完全相反的,一个决策者的收益就是另一个决策者的损失。
非零和博弈模型是指在博弈中各个决策者的利益不完全相反,存在一定的合作和竞争关系。
在实际应用中,博弈模型常常用于研究市场竞争和企业策略问题。
市场竞争模型是一种描述市场中企业之间相互作用关系的博弈模型,它可以用于研究市场价格形成、市场份额分配等问题。
企业策略模型是一种描述企业之间相互作用关系的博弈模型,它可以用于研究企业的定价、产品开发、市场推广等问题。
博弈论,又称为对策论(Game Theory)、赛局理论等,既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
在博弈论中,通常包括以下基本概念:
局中人:在一场竞赛或博弈中,具有决策权的参与者被称为“局中人”。
在一个博弈中,每个局中人都要做出选择。
行动:局中人在博弈中的每一个决策或选择被称为“行动”。
信息:局中人在博弈中所知道的关于其他局中人的选择和条件被称为“信息”。
策略:局中人基于可获得的信息,制定的决策方案或规则称为“策略”。
收益:局中人在博弈中的得失或输赢称为“收益”。
均衡:当所有局中人都认为自己的策略选择最优,并且其他局中人也认为该策略选择是最优时,这种状态被称为“均衡”。
结果:在一场博弈结束后,所有局中人的收益总和被称为“结果”。
博弈论的基本要素包括局中人、策略、信息、收益、均衡和结果等。
其中,局中人、策略和收益是最基本要素。
发展过程方面,博弈论是在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
目前,博弈论在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
博弈论博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。
目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
博弈论主要研究公式化了的激励结构间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
生物学家使用博弈理论来理解和预测进化论的某些结果。
参见:行为生态学(behavioral ecology)。
约翰·冯·诺依曼博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
博弈论思想古已有之,中国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的策墨洛(Zermelo)基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。