博弈模型
- 格式:pdf
- 大小:166.94 KB
- 文档页数:3
这一节主要是列举博弈模型中的几种比较特殊的博弈论模型,它们具有一些特殊的性质。
这几种模型分别为超模、潜在以及重复博弈模型。
(1) 超模博弈模型。
假设在博弈模型中,其效用函数呈现出超模性,那么这个博弈模型即为超模博弈模型。
下面先给出超模性的定义:在一个偏序集 X ,如果在这个集合中的任意 a ,b ∈ X,都存在着a ∧ b ∈ X 及a ∨ b ∈ X,其中a ∨ b = sup { a ,b}, a ∧ b = inf { a ,b},则这个函数称之为超模的。
博弈模型超模性的判定:从定义可以推导出,只要在博弈模型中的所有博弈方的策略为紧集合,并且收益表示式都满足式(2-8),满足以上两点则这个博弈过程就可以称之为超模博弈。
2( )ii jU aa a≥j ≠ i ∈ N(2-8)并且超模博弈具有纳什均衡,而且肯定是唯一的纳什均衡点。
(2) 潜在博弈模型。
潜在博弈是一个特殊的类型。
定义函数V :A → R。
ΔV 代表博弈整体的效用改变,iΔu 表示用户 i 的效用改变,当任意用户 i 进行策略的改变,都有iΔu = Δ V,如果所有的任意博弈参与者都单方面的策略改变,都存在iΔV = Δu ,则称该博弈模型为潜在博弈。
否则,如果sgn sgniΔV = Δu ,则这样的博弈模型称之为顺序的潜在博弈已模型。
模型的判定:只要在博弈模型中的所有博弈方的策略为紧集合,并且收益表示式都满足式(2-9),满足以上两点则这个博弈过程就可以称之为潜在博弈模型。
22( )( )jii j i jU aU aa a a a=j ≠ i ∈ N ,a ∈ A(2-9)并且潜在博弈具有纳什均衡,而且肯定是唯一的纳什均衡点。
(3) 重复博弈模型。
这种博弈模型表示 N 多相同的“阶段博弈”组成的博弈模型的整体,参与者在博弈过程中,可以根据过去的策略的了解,以及对未来的形式的估计,和根据当时的情况来实时的调整选用的策略组合。
博弈模型汇总如下:
1.合作博弈与非合作博弈:这是根据参与者之间是否可以达成具
有约束力的协议来划分的。
合作博弈强调团队合作和协作,目标是达成共赢;而非合作博弈则强调个人利益最大化,不考虑其他参与者的利益。
2.静态博弈与动态博弈:这是根据参与者做出决策的时间顺序来
划分的。
静态博弈是指所有参与者同时做出决策,或者决策顺序没有影响;动态博弈是指参与者的决策有先后顺序,后行动者可以观察到先行动者的决策。
3.完全信息博弈与不完全信息博弈:这是根据参与者对其他参与
者的偏好、策略和支付函数了解的程度来划分的。
完全信息博弈是指所有参与者都拥有完全的信息,能够准确判断其他参与者的策略和支付函数;不完全信息博弈则是指参与者只拥有部分信息,无法准确判断其他参与者的策略和支付函数。
4.零和博弈与非零和博弈:这是根据所有参与者的总收益是否为
零来划分的。
零和博弈是指所有参与者的总收益为零,一方的收益等于另一方的损失;非零和博弈则是指所有参与者的总收益不为零,各方的收益和损失不一定相关。
5.竞争博弈与合作博弈:这是根据参与者之间是否存在竞争或合
作关系来划分的。
竞争博弈是指参与者之间存在竞争关系,目标是追求个人利益最大化;合作博弈则是指参与者之间存在合作关系,目标是追求共同利益最大化。
6.微分博弈与离散博弈:这是根据决策变量的连续性来划分的。
微分博弈是指决策变量是连续变化的,需要考虑时间、速度等因素;离散博弈则是指决策变量只有有限个可能的取值,通常只考虑状态的变化而不考虑时间、速度等因素。
bertrand博弈模型
摘要:
1.简介
2.博弈模型的基本概念
3.bertrand 博弈模型的特点
4.bertrand 博弈模型的应用
5.我国对bertand 博弈模型的研究
6.结论
正文:
博弈论是研究决策制定和结果影响的数学理论。
在博弈论中,博弈模型是一种理论工具,用于描述参与者在特定情况下做出的决策。
bertrand 博弈模型是博弈模型中的一种,被广泛应用于经济学、社会学等领域。
2.博弈模型的基本概念
博弈模型是一种理论工具,用于描述决策者在特定情况下做出的决策。
在博弈模型中,决策者被称为“玩家”,每个玩家都有多个可选策略。
玩家的目标是最大化自己的利益,而游戏的结果是由所有玩家的策略决定的。
3.bertrand 博弈模型的特点
bertrand 博弈模型是一种特殊的博弈模型,它的特点是每个玩家都有一定的生产成本,并且每个玩家都可以选择生产数量。
在bertrand 博弈模型中,玩家的目标是最大化自己的利润,而游戏的结果是由所有玩家的生产决策决定的。
4.bertrand 博弈模型的应用
bertrand 博弈模型被广泛应用于经济学、社会学等领域。
例如,它可以用于研究市场竞争、价格制定、政策制定等问题。
5.我国对bertand 博弈模型的研究
我国对bertrand 博弈模型的研究主要集中在经济学领域。
学者们利用bertrand 博弈模型研究了市场竞争、价格制定等问题,并提出了一些有价值的结论。
6.结论
bertrand 博弈模型是一种重要的博弈模型,被广泛应用于经济学、社会学等领域。
十大经典博弈论模型博弈论是一门研究决策者之间互动的学科,其应用范围广泛,涉及到经济、政治、生物学等领域。
在博弈论中,经典博弈论模型是基础和核心,以下是介绍十大经典博弈论模型:1. 囚徒困境博弈模型囚徒困境博弈模型是博弈论中最为著名的模型之一,也是最为典型的非合作博弈模型。
该模型主要讲述的是两个囚犯被抓后面临的选择问题,如果两个人都招供,那么都将受到较重的惩罚;如果两个人都不招供,那么都将受到轻微的惩罚;如果一个人招供而另一个人不招供,那么招供的人将受到宽大处理,而另一个人将受到较重的惩罚。
2. 零和博弈模型零和博弈模型是博弈论中最为简单的模型之一,其特点是参与者之间的利益完全相反,即一方获得利益就意味着另一方的利益受到损失。
在这种情况下,参与者之间的互动往往是竞争和对抗的。
3. 博弈树模型博弈树模型是一种用于描述博弈过程的图形模型,它可以清晰地展示出参与者在不同阶段的选择和决策,以及每个选择所带来的收益和风险。
4. 纳什均衡模型纳什均衡模型是博弈论中最为重要的概念之一,它指的是一个博弈中所有参与者都采取了最优策略的状态。
换句话说,如果所有参与者都遵循纳什均衡,那么任何一个人单方面改变策略都将无法获得更多的利益。
5. 最小最大化模型最小最大化模型是一种解决零和博弈问题的方法,其思想是在所有可能的情况中,选择让对手收益最小的情况,从而实现自己的最大化收益。
6. 帕累托最优解模型帕累托最优解模型是一种解决多人博弈问题的方法,其核心思想是通过合作和协商,使得所有参与者都能获得最大的收益,而不是只有某个人获得了最大的收益。
7. 博弈矩阵模型博弈矩阵模型是一种常用的博弈论分析工具,它可以清晰地展示出参与者在不同策略下的收益和风险,从而帮助参与者做出最优决策。
8. 拍卖模型拍卖模型是博弈论中的一个重要应用领域,其目的是通过竞价的方式,让参与者以最低的价格获得所需的商品或服务。
9. 逆向选择模型逆向选择模型是一种解决信息不对称问题的方法,其核心思想是通过知道对方的信息,来预测对方的行为和决策,从而做出最优策略。
博弈模型解决方案
《博弈模型解决方案》
博弈模型是一种用于分析决策制定和竞争情景的数学工具。
在许多领域,例如经济学、政治学和生物学中,博弈模型都被广泛应用。
通过建立数学模型来描述各方的利益和策略选择,博弈模型可以帮助决策者做出最佳的决策。
博弈模型解决方案是一种利用博弈论原理来解决实际问题的方法。
在博弈模型中,各方的利益和对策都会被建模,并且通过计算和分析来找到最优的策略。
这种方法可以应用到很多领域,例如竞争策略、投资决策和资源分配等问题中。
在博弈模型解决方案中,常用的方法包括纳什均衡、博弈树和博弈矩阵等。
纳什均衡是指在博弈中各方选择的策略是最优的,并且在互相了解对方策略的情况下不会改变。
博弈树是一种图形化工具,用于描述博弈过程和各方的决策路径。
博弈矩阵则用来清晰地展示各种情景下各方的策略选择和最终结果。
通过这些方法,博弈模型解决方案可以帮助人们更清晰地分析和理解各种竞争和决策情景。
通过对各方利益和策略的深入分析,我们可以更好地做出决策,最大化自己的利益并且减少风险。
因此,博弈模型解决方案是一种重要的工具,可以帮助我们更好地应对各种决策和竞争情景。
博弈模型的结果解释解释说明以及概述1. 引言1.1 概述博弈模型是研究不同决策者在特定情境中进行策略选择的数学框架,它广泛应用于经济学、社会科学以及其他相关领域。
通过分析各方的利益和行为方式,博弈模型可以帮助我们理解决策者之间的相互作用和最终结果。
本文旨在探讨博弈模型的结果解释,即如何对博弈模型得出的结果进行解读与说明。
通过深入研究博弈模型,我们可以更好地理解其运作机制,并从中获得有价值的见解。
1.2 文章结构本文主要包括以下几个部分:引言、博弈模型的结果解释、解释说明以及概述、结论和参考文献。
在引言部分,我们将首先对博弈模型进行概述,介绍其基本原理和应用领域。
随后,我们会详细阐述本文的目的和主要内容,并提供一个全面的文章结构框架。
1.3 目的本文旨在探讨博弈模型的结果解释方法和技巧,并提供一些实例分析。
通过这样做,我们希望能够帮助读者更好地理解博弈模型的结果,以及如何有效地解释和说明这些结果。
在深入探讨解释说明的重要性和方法技巧之后,我们将进一步介绍如何汇总和概述研究结果。
最后,我们将总结本文的主要发现和贡献,并展望博弈模型结果解释领域未来的研究方向。
通过本文的阐述与探讨,读者将能够更好地应用博弈模型,并准确地解释和说明其得出的结果。
2. 博弈模型的结果解释:2.1 博弈模型介绍:在博弈论中,博弈模型是用来描述参与者行为和可能结果的数学框架。
它由参与者、策略和支付函数组成。
参与者根据自己的理性选择策略,并得到相应的支付。
2.2 结果解释方法论:当我们得到了博弈模型的结果后,我们需要对这些结果进行解释和分析。
结构化且系统性地解释模型结果对于深入理解博弈过程、预测参与者行为以及制定合适决策具有重要意义。
在进行结果解释时,我们可以采用以下方法论:首先,需要对博弈模型中所使用的各种概念和符号进行定义和解释,确保读者对模型基本原理有清晰直观的认识。
其次,通过分析参与者之间的相互作用和选择行为,阐述模型所揭示出来的策略均衡点或优势策略。
博弈模型分析范文博弈模型分析是研究博弈论的一种方法,通过分析参与博弈的各方的利益和策略选择,来推断博弈的结果及其影响因素。
博弈模型能够帮助了解决策者的行为动机,预测博弈结果以及寻找策略的改进空间。
下面将详细介绍博弈模型分析的步骤和应用。
第一步:定义博弈参与者,即博弈的主体。
参与者可以是个人、团队、企业或国家等。
第二步:确定参与者的策略空间。
策略是参与者在博弈中可以采取的行动。
策略空间则是所有参与者可能的策略组合。
在确定策略空间时,需要考虑参与者的限制条件和能力。
第三步:建立效用函数。
效用函数是博弈参与者对不同结果和策略的偏好程度的量化表示。
通过建立效用函数,可以分析参与者的动机、目标和行为。
第四步:制定收益矩阵。
收益矩阵是对博弈参与者在不同策略组合下可能的收益或成本进行展示的矩阵。
收益矩阵可以帮助分析博弈参与者选择不同策略的概率。
第五步:找到均衡解。
均衡解是指在博弈中不存在任何参与者可以改变自己的策略来获得更好收益的状态。
常见的均衡概念包括纳什均衡、帕累托最优解等。
通过寻找均衡解,可以预测博弈的结果和可能出现的情况。
1.经济领域:博弈模型可以应用于市场竞争、定价策略、合作与竞争等经济问题的分析。
例如,博弈模型可以用于分析企业之间的定价策略,预测市场价格的稳定性,同时帮助企业制定合理的竞争策略。
2.政治领域:博弈模型可以应用于政治家、政党及国家之间的决策分析。
例如,博弈模型可以用于分析选举策略、政府决策的权衡及外交策略的选择。
3.环境领域:博弈模型可以应用于环境保护、资源分配、排放管理等环境问题的研究。
例如,博弈模型可以用于分析各方在资源分配中的决策行为,预测不同策略对环境的影响,并提出合理的管理政策。
4.决策分析:博弈模型可以应用于决策分析中,帮助决策者理解和预测各方行为,并制定最优决策策略。
例如,在商业决策中,博弈模型可以用于分析市场竞争、产品定价等问题,帮助企业做出最优的决策。
总结来说,博弈模型分析是一种重要的决策分析工具,通过对博弈参与者的动机和策略选择进行细致分析,可以帮助理解和预测博弈的结果,并为决策者提供策略改进的空间。
博弈模型汇总博弈模型是博弈论的重要工具,用于描述博弈参与者之间的策略和利益关系。
在博弈论中,通过建立合适的博弈模型,可以帮助我们分析和理解各种不同类型的博弈情境,并预测博弈参与者的行为和可能的结果。
下面将对几种常见的博弈模型进行汇总和介绍。
1. 零和博弈模型:零和博弈模型是博弈论中最简单和最基本的模型之一。
在零和博弈中,博弈参与者的利益完全相反,一方的利益的增加必然导致另一方的利益的减少。
这种博弈模型常常用于描述双方的冲突和竞争情境。
常见的零和博弈模型有二人零和博弈和多人零和博弈。
2. 非合作博弈模型:非合作博弈模型是博弈论中较为常见的模型之一。
在非合作博弈中,博弈参与者之间的行动和决策是相互独立的,每个博弈参与者都追求自身的最大利益。
在非合作博弈模型中,博弈参与者可以选择不同的策略,根据对手的行动做出最优的响应。
常见的非合作博弈模型有纳什均衡模型和博弈树模型。
3. 合作博弈模型:合作博弈模型是博弈论中另一个重要的模型。
在合作博弈中,博弈参与者之间可以进行协作和合作,共同追求最大化整体利益。
合作博弈模型通常用于描述多个博弈参与者之间的联盟和合作情境。
常见的合作博弈模型有核心模型和合作博弈解。
4. 演化博弈模型:演化博弈模型是博弈论中较为新颖和有趣的模型之一。
在演化博弈中,博弈参与者的行动和策略可以随时间变化和演化。
演化博弈模型通常用于描述博弈参与者之间的适应性和进化过程。
常见的演化博弈模型有进化博弈动力学模型和演化博弈解。
博弈模型的应用广泛,不仅在经济学中有重要的地位,也在其他学科领域得到广泛运用。
博弈模型可以帮助我们分析和解决各种决策和策略问题,对于理解社会、经济和生物系统中的行为和演化具有重要意义。
总结起来,博弈模型是博弈论的核心工具之一,用于描述和分析博弈参与者之间的策略和利益关系。
常见的博弈模型包括零和博弈模型、非合作博弈模型、合作博弈模型和演化博弈模型。
这些模型在各个领域中都有广泛的应用,对于理解和解决各种决策和策略问题具有重要意义。
斯坦伯格博弈模型斯坦伯格博弈模型是一种经典的博弈论模型,它被广泛应用于经济学、政治学、社会学等领域。
该模型的核心思想是通过分析参与者的策略和利益,来预测博弈的结果。
下面将从定义、特点、应用等方面进行阐述。
一、定义斯坦伯格博弈模型是一种博弈论模型,它描述了两个参与者在一个有限的资源池中进行博弈的情形。
在这个模型中,参与者可以选择合作或者背叛对方,从而获得不同的收益。
如果两个参与者都选择合作,那么他们将会平分资源池中的收益;如果两个参与者都选择背叛,那么他们将会失去所有的收益;如果一个参与者选择合作,而另一个参与者选择背叛,那么背叛者将会获得全部的收益,而合作者将会失去所有的收益。
二、特点斯坦伯格博弈模型具有以下几个特点:1. 零和博弈:在斯坦伯格博弈模型中,参与者的收益是互相矛盾的,即一个人的收益增加必然导致另一个人的收益减少。
因此,该模型被称为零和博弈。
2. 非合作博弈:在斯坦伯格博弈模型中,参与者没有任何形式的沟通和协商,他们只能根据自己的利益来做出决策。
3. 稳定性:在斯坦伯格博弈模型中,如果两个参与者都选择合作,那么他们将会获得最大的收益。
因此,合作是最稳定的策略。
三、应用斯坦伯格博弈模型被广泛应用于经济学、政治学、社会学等领域。
以下是一些具体的应用:1. 囚徒困境:囚徒困境是斯坦伯格博弈模型的一个经典案例。
在这个案例中,两个囚犯被关在不同的房间里,他们都面临着是否供出对方的选择。
如果两个囚犯都选择合作,那么他们将会获得最小的刑期;如果两个囚犯都选择背叛,那么他们将会获得最大的刑期;如果一个囚犯选择合作,而另一个囚犯选择背叛,那么背叛者将会获得最小的刑期,而合作者将会获得最大的刑期。
2. 市场竞争:在市场竞争中,企业之间也存在着斯坦伯格博弈模型的情形。
如果所有的企业都选择合作,那么他们将会共同获得市场的收益;如果所有的企业都选择背叛,那么他们将会共同失去市场的收益;如果一个企业选择合作,而另一个企业选择背叛,那么背叛者将会获得市场的全部收益,而合作者将会失去市场的全部收益。
有趣味的博弈论模型
按语: 本文已经发表在“百科知识”2009年6月下半月总第413期第14-15页;在今年2月下半月总第405期第11-13页上发表了“网络科学三大里程碑”;2005年11月上半月总第326期第21-22页发表了“网络科学的三大发现”。
令我意外的是去年在网上偶然发现“共检索到 10 条读者推荐文章”(请看最后附录),这篇科普文章名列首位,我们还有一篇文章名列第七。
如果读者有兴趣可以去看看,或等我有时间找出来。
我觉得,把新兴科学应用通俗易懂的语言写出来,有利于科学知识普及。
这也应该是一个科学工作者的责任。
在自然界和人类社会经济等领域中广泛存在合作与竞争,而能够反映这种既激烈竞争又需要合作的一门学科就是博弈论(Game Theory),也称对策论,它是模拟和分析理性的个体在利益冲突环境下相互作用的形式、决策及其均衡理论,研究个体之间行为的相互影响和相互作用规律,它可以描述现实生活中参与者面对有限资源的合作与竞争行为。
令人惊奇的是,有三次诺贝尔获奖者是博弈论的杰出科学家,他们是1985年获得诺贝尔奖的公共选择学派的领导者布坎南,1994年经济学诺贝尔奖颁发给美国普林斯顿大学的纳什博士、塞尔屯、哈桑尼3位博弈论专家,1995年获奖的理性主义学派的领袖卢卡斯。
博弈论在经济学、政治学、管理学、社会学、军事学、生物学等诸多学科领域具有广泛的实际背景和应用价值。
进入20世纪末,随着复杂网络科学的一些新的发现,博弈论也成为网络时代人们的一种思维方式、竞争与合作的模式。
博弈论对人有一个最基本假定:人是理性的,人在具体策略选择的目的全是使自己的利益最大化。
博弈论就是研究理性的人之间如何进行策略选择的,因此博弈论也称为对策论。
博弈论就凭这么一条最简单的假定可以展开广泛的研究,并获得了丰富多彩的结果,利用博弈论可以解读人类的社会行动或集体行动,更易理解人类社会的复杂性和特殊性。
为了刻画个体间利益的冲突对整个系统的影响,人们已经提出和研究了许多博弈模型,比较著名的有三个模型:囚徒困境、“雪堆”博弈和“少数者”博弈,下面笔者通过对这三个模型进行简单而通俗的介绍,让大家了解博弈论及其应用概况。
“囚徒困境”模型
囚徒困境作为一个经典的博弈模型受到广泛关注。
这个博弈模型假设两个小偷合伙作案时被捕,分别关在不同的屋子里,如果双方都拒绝承认同伴的罪行,则由于证据不足两人都会被轻判(收益为);为此,警方设计了一个机制:如果一方出卖同伴,而另一方保持忠
诚,则背叛者将无罪释放(收益为T )
;坚持忠诚的一方将被重判(收益为);如果双方都背叛了对方,则双方都会被判刑(收益为R S P )。
这里假设上述收益参数满足下面的条件:。
对每个参与者来说,如果对手坚持忠诚,则他也选择忠诚得到的收益T R P S >>>R 小于他选择背叛得到的收益T ;如果对手选择背叛,则他选择忠诚得到的收益仍小于他选择背叛得到的收益。
S P 可见,无论对手采取哪种策略,自己的最佳策略就是背叛,双方都选择背叛称为囚徒困境的唯一“纳什均衡”(纳什因其提出的“非合作完全信息博弈的纳什均衡”概念而荣获了1994年的诺贝尔获得经济学奖);同时选择背叛所取得的平均收益要低于两个人同时选择合作取得的平均收益。
在这种情况下,理性参与者面临着两难的困境。
自然界中广泛存在的合作现象——从单细胞生物的协同工作到人类的无私奉献的行为
说明,还有其他的动力学机制激励一般所认为的自私的个体认识到合作的重要性。
为了揭示这种潜在的演化机制,有人提出了“针锋相对”演化规则,采用“去输存赢”策略,改进囚徒困境中的两难结局。
“雪堆”博弈模型
“雪堆”博弈又称为“鹰鸽”博弈或者“小鸡”博弈(Chicken Game),是另一类两人对称博弈模型,描述了两个人相遇时是彼此合作共同受益,还是彼此欺骗来相互报复。
它揭示了个体理性和群体理性的矛盾对立。
可以这样来描述雪堆博弈:在一个风雪交加的夜晚,两人相向而来,被一个雪堆所阻,假设铲除这个雪堆使道路通畅需要的代价为c , 如果道路通畅则带给每个人的好处量化为b 。
如果两人一齐动手铲雪,则他们的收益为;如果只有一人铲雪,虽然两个人都可以回家,但是背叛者逃避了劳动,它的收益为,而合作者的收益为;如果两人都选择不合作,两人都被雪堆挡住而无法回家,他们的收益都为。
这里假设收益参数满足下面的条件:T R 。
雪堆模型与囚徒困境不同的是,遇到背叛者时合作者的收益高于双方相互背叛的收益。
因此,一个人的最佳策略取决于对手的策略:如果对手选择合作,他的最佳策略是背叛;反过来,如果对手选择背叛,那么他的最佳策略是合作。
这样合作在系统中不会消亡,而与囚徒困境相比,合作更容易在雪堆博弈中涌现。
/2R b c =−T b =S b c =−0P =S P >>>
“争当少数者”模型
该模型由查勒特和张翼成于1997年提出,他们假设在一个系统中有(奇数)个参与者,在某一时刻各自独立地在两个策略中做出选择,参与人数少的策略获胜。
该模型的核心思想是少数者获胜,这是从实际中提炼出来的一个好模型,股票交易就是一个典型例子。
需要指出,少数者博弈模型是对著名“酒吧问题”的一种抽象和简化。
N 酒吧问题研究的是一群生活在美国圣塔菲的人们在周四晚上是否去该地区的一个著名酒吧的决策问题:每周四晚上这个酒吧都会有优雅的爱尔兰音乐演奏,然而如果去的人数过多,超过了酒吧所能容纳的人数(阈值c ),酒吧就会变得嘈杂拥挤,人们也无法悠闲地欣赏音乐。
因此人们需要根据过去的公共信息来对当晚去酒吧的人数做预测,以决定自己究竟是去酒吧还是留在家里。
酒吧问题和少数者博弈模型都反映了社会经济活动中众多千差万别的参与者对有限资源竞争的基本特征,其思想是金融市场中的普遍原则——少数人获胜。
争当少数者博弈模型原则上与前面两个模型不同,双方并非完全自私、完全理性且具有相当完整信息,并按照严格的收益计算而决策,以便达到某种博弈的均衡。
人们看到该模型中的双方基本上是根据“成功的经验”或“模仿成功者”进行决策,并非理性,信息也非完整,因此它不存在争当少数者博弈模型的均衡,似乎可以说,非理性和非完整信息的博弈更为重要。
确实,现实生活中究竟有哪些面临的决择是“完全理性”地根据完全信息严格计算而决策的博弈?
进而,提出演化少数者博弈(EMG)模型,将进化论与少数者博弈结合在一起,发现通过学习过去的公共历史信息,可以提高参与者的平均收益。
在EMG 模型中,对于某一轮博弈,参与者根据他记忆中保存的公共历史信息来独立地决策本轮自己是加入“1”组还是“0”组;当所有人都做出选择后,进入人数少的一组的人为获胜者,进入人数多的一组的人为失败者。
人们通过对EMG 模型的研究发现一个有趣的结论:一个相互间竞争的人群最终总是趋向于分离成为具有两种相反的极端行为的人群。
这意味着为了在竞争社会中生存,参与者的行为最终会走向极端:要么始终遵循基本策略,要么始终反其道而行之。
博弈后获胜者的收益加,S
而失败者的收益减1,因此也被称为奖惩比。
实际上,还有更复杂的情形,例如,奖惩比情况下发现:策略分布既可形成“M ”形(S 1S <0992S .=),也可形成“”形分布
(),这意味着随着奖惩比S 的减小,参与者采取的策略从极端转向中庸。
进一步,在争当少数者博弈演化模型中,发现在 S<l 的情况下可从自分离为两个极端人群的相转变为中庸人群峰化相,这种相变是普遍存在的,它不仅依赖于奖惩比, 而且依赖于参与博弈的总人数, 还与经纪人破产更新的最低积累财富的阙值有关。
因此,特殊的具体的博弈情形要深入具体分析,也不能一概而论,这也是博弈论丰有吸引力所在。
∩0971S .=本文以囚徒困境、雪堆博弈和少数者博弈三个典型模型为例,简单介绍了近年来博弈论研究概况。
在现实生活和许多领域中,博弈行为对网络结构演化的作用是令人关注的课题。
随着演化博弈动力学行为与复杂网络之间关系深入研究,博弈必定会推动复杂网络的发展,乃至社会的进步,其应用前景十分美好。
附录:网上10 条读者推荐文章目录如下:
[1] 方锦清. 网络科学的三大发现[J]. 百科知识 , 2005,(21) .
[2] 之秋. 是谁在和“世人”开玩笑?[J]. 报刊之友 , 2001,(01) .
[3] 李峰 ,朱静. 电子商务与国际贸易[J]. 世界有色金属 , 2005,(10) .
[4] 清道夫. 网络世界生存小窍门之拒收垃圾[J]. 电脑爱好者 , 2000,(06) .
[5] 刘杰,陆君安. 一个小型科研合作复杂网络及其分析[J]. 复杂系统与复杂性科学 , 2004,(03) .
[6] 覃森,戴冠中,王林. 节点数固定的复杂网络模型初探[J]. 复杂系统与复杂性科学 , 2005,(02) .
[7] 刘强,方锦清,李永,梁勇. 探索小世界特性产生的一种新方法[J]. 复杂系统与复杂性科学 , 2005,(02) .
[8] 杨波,陈忠,段文奇. 基于个体选择的小世界网络结构演化[J]. 系统工程 , 2004,(12) .
[9] 刘涛,陈忠,陈晓荣. 复杂网络理论及其应用研究概述[J]. 系统工程 , 2005,(06) .
[10] 项天晟. 网络命运交响曲[J]. 广东科技 , 2002,(09) .。